
SIGNALS AND SYSTEMS 
 

1 
 

Prepared BY 
 Mr. N Nagaraju, Assistant Professor, 
 Mrs. L Shruthi, Assistant Professor  



Signal Analysis 
 

1 
 



Signal and Vectors 
 

• Any vector A in 3 dimensional space can be 
 expressed as 

 A = A1a + A2b + A3c 
 - a, b, c are vectors that do not lie in the same plane and are 

 not collinear 
 - A1, A2, and A3 are linearly independent 

 - No one of the vectors can be expressed as a linear 
 combination of the other 2 

 - a, b, c is said to form a basis for a 3 dimensional vector 
 space 

 - To represent a time signal or function X(t) on a T interval 

 (t0 to t0+T) consider a set of time function independent of 
 x(t) (t),  

 
(t), (t)  (t) 
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Signal and Vectors 
 

• X(t) can expanded as 
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• N coefficients Xn are independent of time 

and subscript xa is an approximation 
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Signals and Vectors 
 

• Signal g can be written as N dimensional vector 
 g = [g(t1) g(t2) ………… g(tN)] 

 • Continuous time signals are straightforward 
 generalization of finite dimension vectors 

 
lim 
 

g 

 

 

 

g(t) 

 N  
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• In vector (dot or scalar), inner product of two real- 

 valued vector g and x: 
 - <g,x> = ||g||.||x||cosθ  θ - angle between vector g and x 

 - Length of a vector x: 
 ||x||2 = <x.x> 
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Analogy between Signal Spaces 

 and Vector Spaces 
 • Consider two vectors V1 and V2 as shown in Fig. If V1 is 

 to be 
 

• represented in terms of V2 
 

• where Ve is the error. 
 

Figure : Representation in vector space 
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Component of a Vector in terms of another vector. 
 
•  Vector g  in Figure 1 can be expressed in terms of vector x 

 g = cx + e 

 g cx 

 e = g - cx (error vector) 

 

Figure 1 
 •  Figure 2 shows infinite possibilities to express vector g in terms of 

 vector x 
 

Figure 2 
 

g = c1x + e1 =  c2 x + e2 

 6 
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• Let f1(t) and f2(t) be two real signals. Approximation of 
 f1(t) by f2(t) over a time interval t1 < t < t2 can be given 

 by 
 

where fe(t) is the error function. 
 • The goal is to find C12 such that fe(t) is minimum over 

 the interval considered. The energy of the  error signal 
ε given by 
 

To find C12, 
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• Solving the above equation we get 
 

• The denominator is the energy of the signal f2(t). 
 • When f1(t) and f2(t) are orthogonal to each other 
 C12 = 0. 
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Scalar or Dot Product of Two Vectors 
 

•  is the angle between vectors g and x. 
 

•  The length of the component g along x is: 
 

•  Multiplying both sides by |x| yields: 
 

•  Where: 
 

•  Therefore: 
 

•  If g and x are Orthogonal (perpendicular): 
 

•  Vectors g and x are defined to be Orthogonal if the dot product of 
 the two vectors are zero. 
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Components and Orthogonality of Signals 
 •  Concepts of vector component and orthogonality can be extended to 

 CTS 
 •  If signal g(t) is approximated by another signal x(t) as : 

 

•  The optimum value of c that minimizes the energy of the error signal 
 is: 

 
c 
 

•  We define real signals g(t) and x(t) to be orthogonal over the interval 
 [t1, t2], if: 

 

•  We define complex signals* x1(t) and x2(t) to be orthogonal over the 

 interval [t1, t2]: 
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Example 
 • For the square signal g(t) find the component in g(t) 

 of the form sin t.  In order words, approximate g(t) in 

 terms of sin t so that the energy of the error signal is 
 minimum 
 

• 
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Introduction to Signals 
 • A Signal is the function of one or more independent 

 variables  that carries some information to represent a 

 physical phenomenon. 

 • A continuous-time signal, also called an analog signal, 
 is defined along a continuum of time. 
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Typical Continuous-Time Signals 
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Continuous vs Continuous-Time 

 Signals 

 All continuous signals that are functions of time are 
 continuous-time but not all continuous-time signals are 

continuous 
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Continuous-Time Sinusoids 
 

g(t)= Acos(2pt /T0 +q)= Acos(2p f0t +q)= Acos(w0t +q) 
 - 

 

- 
 

- 
 

- 
 

­ 
 Amplitude 

 
Period  Phase Shift 
 

Cyclic 
 

Radian 
 (s) 

 
(radians) 
 

Frequency 
 

Frequency 
 

( Hz) 
 

(radians/s) 
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Elementary Signals 
 

Sinusoidal & Exponential Signals 
 • Sinusoids and exponentials are important in signal 
 and system analysis because they arise naturally in 

 the solutions of the differential equations. 
 • Sinusoidal Signals can expressed in either of two 

 ways : 
 cyclic frequency form- A sin 2Пfot = A sin(2П/To)t 

radian frequency form- A sin ωot 

 ωo = 2Пfo = 2П/To 

 To = Time Period of the Sinusoidal Wave 
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Sinusoidal & Exponential Signals Contd. 
 

x(t) = A sin (2Пfot+ θ) 
 = A sin (ωot+ θ) 

 

Sinusoidal signal 
 

x(t) = Aeat 

 

Real Exponential 
 

= Aejωt   =  A[cos (ωot) +j sin (ωot)]   Complex 

 Exponential 
 

θ = Phase of sinusoidal wave 
 A = amplitude of a sinusoidal or exponential signal 
 fo = fundamental cyclic frequency of sinusoidal signal 

ωo = radian frequency 
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Continuous-Time Exponentials 
 

g(t ) = Ae-t/t 

 - 
 

­ 
 Amplitude  Time Constant (s) 

 

18 
 



A discrete-time signal is defined at discrete 
 times. 
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Unit Step Function 
 

u t  

 

1 , t 0 

  
 1/2 , t 0 
  
  
 

Precise Graph 
 

0 , t 0 

 

Commonly-Used Graph 
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Signum Function 
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Precise Graph 
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1 ,t 0 
 

  2u t 1 

  
  
 
Commonly-Used Graph 
 

The signum function, is closely related to the unit-step 
 function. 
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Unit Ramp Function 
 

ramp t  

 

t , t 0  
  

 

t 
 

 

 
u d t  t u 

  
 

0 , t 0 
 

  

 

•The unit ramp function is the integral of the unit step function. 
 •It is called the unit ramp function because for positive t, its 
 slope is one amplitude unit per time. 
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The Unit Ramp Function 
 

ramp(t) = 

 

ìt , t>0 
 í 
 0 , t£0 

 î 
 

t 
 ü 

 ý= ò u(l)dl=tu(t) 
þ -¥ 
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Rectangular Pulse or Gate Function 
 

Rectangular pulse, 
 

 
 

a 
 

1/a 
 t  

 0 
 
 

 

, t a/2 

 ,t a/2 
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Unit Impulse Function 
 As a approaches zero, g t  approaches a unit 

step and g approaches a unit impulse t  

 

Functions that approach unit step and unit impulse 
 

So unit impulse function is the derivative of the unit step 
 function or unit step is the integral of the unit impulse function 
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Representation of Impulse Function 
 

The area under an impulse is called its strength or weight. It is 

represented graphically by a vertical arrow. An impulse with a 

strength of one is called a unit impulse. 
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Properties of the Impulse Function 
 

The Sampling Property 
 

 

 
g t  

 

t t 

 

 

 

dt  g 

 

t 

 

 

 

 
  

 

The Scaling Property 
 

a 

 

0 
 

1 
 t t  

 

0 
 

t t  

 
0 
 

The Replication Property 
 

a 
 

0 
 

g(t)⊗ δ(t) = g (t) 
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Unit Impulse Train 
 The unit impulse train is a sum of infinitely uniformly- 

 spaced impulses and is given by 
 

 

   t  
 

T 
 

 
 n  

 

t nT , 
 

nan integer 
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The Unit Rectangle Function 
 

The unit rectangle or gate signal can be represented as  combination  of two shifted 
 unit step signals as shown 
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The Unit Triangle Function 
 

A triangular pulse whose height and area are both one but its base width is not, is 
 called unit triangle function. The unit triangle is related to the unit rectangle 

through an operation called convolution. 
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Sinc Function 
 

sinc t  

 

sin t  

 t 

 

31 
 



Discrete-Time Signals 
 

• Sampling is the acquisition of the values of a 

continuous-time signal at discrete points in time 
 • x(t) is a continuous-time signal, x[n] is a 

discrete-time signal 
 x n x  

 
nT 
 

s 
 

 

 
where T is the time between samples 
 

s 
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Discrete Time Exponential and 

 Sinusoidal Signals 

 • DT signals can be defined in a manner analogous to 
 their continuous-time counter part 

 x[n] = A sin (2Пn/No+θ) 
 = A sin (2ПFon+ θ) 

 

Discrete Time Sinusoidal Signal 
 

x[n] = an 

 

Discrete Time Exponential Signal 
 

n = the discrete time 
 A = amplitude 

 θ = phase shifting radians, 
 No = Discrete Period of the wave 
 1/N0 = Fo = Ωo/2 П = Discrete Frequency 
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Discrete Time Sinusoidal Signals 
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Discrete Time Unit Step Function or 

 Unit Sequence Function 

 
u n  

 

1 , n 0 

  
  

 
0 , n 0 
 

35 
 



Discrete Time Unit Ramp 

 Function 
 

ramp n  

 

n , n 0  
  

 
 

 

n 
 

 
 

u m 1  

  
 

0 , n 0 
 

 m  
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Discrete Time Unit Impulse Function 

 or Unit Pulse Sequence 
 

n  

 

1 , n 0 

  
 0 , 

 
n 

 

 

 

0 

 
 

 

 n  an     for any non-zero, finite integer 
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Unit Pulse Sequence Contd. 
 

• The discrete-time unit impulse is a function in 
 the ordinary sense in contrast with the 

continuous-time unit impulse. 

 • It has a sampling  property. 
 • It has no scaling property i.e. 
 δ[n]= δ[an] for any non-zero finite integer „a‟ 
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Operations of Signals 
 

• Sometime a given mathematical function may 
 completely describe a signal . 

 • Different operations are required for different 
 purposes of arbitrary signals. 

 • The operations on signals can be 

 Time Shifting 

 Time Scaling 
 Time Inversion or Time Folding 
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Time Shifting 
 • The original signal x(t) is shifted by an 

amount tₒ. 
 

• X(t) X(t-to) Signal Delayed  Shift to the 
right 
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Time Shifting Contd. 
 

• X(t) X(t+to) Signal Advanced  Shift 

to the left 
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Time Scaling 
 

• For the given function x(t), x(at) is the 
 time scaled version of x(t) 

 • For a ˃ 1,period of function x(t) reduces 

and function speeds up. Graph of the 
 function shrinks. 

 • For  a ˂ 1,  the  period  of  the  x(t) 
 increases and the function slows down. 

Graph of the function expands. 
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Time scaling Contd. 
 

Example: Given x(t) and we are to find y(t) = x(2t). 
 

The period of x(t) is 2 and the period of y(t) is 1, 
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Time scaling Contd. 
 

• Given y(t), 
 - find w(t) = y(3t) 

and v(t) = y(t/3). 
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Time Reversal 
 

• Time reversal is also called time folding 
 • In Time reversal signal is reversed with 
 respect to time i.e. 

 y(t) = x(-t) is obtained for the given 

function 
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Time reversal Contd. 
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Operations of Discrete Time 

 Functions 
 
Timeshifting 

 
n n n 

 
0 
 
, n an integer 
 

0 
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Operations of Discrete Functions 
 Contd. 
 Scaling; Signal Compression 
 
n  Kn  K an integer > 1 
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Classification of Signals 
 

• Deterministic & Non Deterministic 

Signals 

 • Periodic & A periodic Signals 
 • Even & Odd Signals 
 • Energy & Power Signals 
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Deterministic & Non Deterministic 

 Signals 

 Deterministic signals 
 •  Behavior of these signals is predictable w.r.t time 
 •  There is no uncertainty with respect to  its value at any time. 
 •  These signals can be expressed mathematically. 
 For example  x(t) = sin(3t) is deterministic signal. 
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Deterministic & Non Deterministic Signals 
 Contd. 

 
Non Deterministic or Random signals 
 • Behavior  of  these  signals  is  random  i.e.  not 

 predictable w.r.t time. 

 • There is an uncertainty with respect to  its value 
 at any time. 
 • These signals can’t be expressed mathematically. 
 •  For example   Thermal Noise generated is non 
 deterministic signal. 
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Periodic and Non-periodic Signals 
 

• Given x(t) is a continuous-time signal 

 • x (t) is periodic iff  x(t) = x(t+Tₒ)  for any T and any integer 
 n 
 • Example 

 - x(t) = A cos(wt) 

 - x(t+Tₒ) = A cos[w t+Tₒ)] = A cos(wt+wTₒ)= A 

cos(wt+2 ) = A cos(wt) 
 - Note: Tₒ =1/fₒ ; w 2 fₒ 
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Periodic and Non-periodic 

 Signals Contd. 
 • For non-periodic signals 

 x(t) ≠ x(t+Tₒ) 

 • A non-periodic signal is assumed to have 

a period T = ∞ 
 • Example  of  non  periodic  signal  is  an 
 exponential signal 
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Important Condition of Periodicity for 

 Discrete Time Signals 

 • A discrete time signal is periodic if 

 x(n) = x(n+N) 

 • For  satisfying  the  above  condition  the 

frequency  of  the  discrete  time  signal 

should be ratio of two integers 
 i.e. fₒ = k/N 
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Sum of periodic Signals 
 

• X(t) = x1(t) + X2(t) 
 • X(t+T) = x1(t+m1T1) + X2(t+m2T2) 
 • m1T1=m2T2 = Tₒ = Fundamental period 
 • Example: cos(t /3)+sin(t /4) 
 - T1=(2 )/( /3)=6; T2 =(2 )/( /4)=8; 

 - T1/T2=6/8 = ¾ = (rational number) = 

m2/m1 

 - m1T1=m2T2  Find m1 and m2  

 - 6.4 = 3.8 = 24 = Tₒ 
 55 

 



Sum of periodic Signals - may not 

 always be periodic! 
 

x(t)  x (t)  x (t)  cos 
 

1 2 
 

t sin 2t 

 T1=(2 )/(1)= 2 ;     T2 =(2 )/(sqrt(2)); 

 T1/T2= sqrt(2); 

 - Note: T1/T2 = sqrt(2) is an irrational 

number 

 - X(t) is aperiodic 
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Even and Odd Signals 
 Even Functions 

 
Odd Functions 
 

  g t  

 

  g t  
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Even and Odd Parts of Functions 
 
Theeven partof a function is g 
 

e 
 

g t g t  
t  

 2 
 

g t g t  

 Theodd part 
 

of a function is g 
 

o 
 

t  

 2 
 

A function whose even part is zero, is odd and a function 

whose odd part is zero, is even. 
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Various Combinations of  even and 
 odd functions 

 
Function type 

 
Sum 

 
Difference 

 
Product 

 
Quotient 

 

Both even 

 
Even 

 
Even 

 
Even 

 
Even 

 

Both odd 

 
Odd 

 
Odd 

 
Even 

 
Even 

 

Even and odd 

 
Neither 

 
Neither 

 
Odd 

 
Odd 
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Product of Even and Odd Functions 
 

Product of Two Even Functions 
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Product of Even and Odd Functions 
 Contd. 

 Product of an Even Function and an Odd Function 
 

61 
 



Product of Even and Odd Functions 
 Contd. 

 Product of an Even Function and an Odd Function 
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Product of Even and Odd Functions 
 Contd. 

 
Product of Two Odd Functions 
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Derivatives and Integrals of 
 Functions 

 
Function type 
 

Derivative 
 

Integral 
 

Even 
 

Odd 
 

Odd + constant 
 

Odd 
 

Even 
 

Even 
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Discrete Time Even and Odd 

 Signals 
 

g 
 

e 
 

g n g n  

 

g n g n  
n  

 
g 

 
o 
 

g n g n  

 

g n g n  
n  

 2 
 

2 
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Combination of  even and odd 

 function for DT Signals 
 Function type 

 
Sum 

 
Difference 

 
Product 

 
Quotient 

 

Both even 

 
Even 

 
Even 

 
Even 

 
Even 

 

Both odd 

 
Odd 

 
Odd 

 
Even 

 
Even 

 

Even and odd 

 
Even or Odd 

 
Even or odd 

 
Odd 

 
Odd 
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Products of DT Even and Odd 
 Functions 

 Two Even Functions 
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Products of DT Even and Odd 
 Functions Contd. 

 An Even Function and an Odd Function 
 

68 
 



Proof Examples 
 

Change t  -t 

 •  Prove that product of two even 
 signals is even. 
 

x t) x t) x(t)  

 
1 2 
 

x( t) x( t) x( t)  

 
1 
 

x t) x t) 
 

1 2 
 

•  Prove that product of two odd 
 signals is odd. 

 

2 
 

x(t) 

 

x(t) 

 

 

 

x(t) 

 

x 

 

(t) 

 

 

 
1 
 2 

 •  What is the product of an even 
 

x( t) x( t) x( t)  
 signal and an odd signal? 

 Prove it! 
 

x(t)  

 
1 
 

1 
 

x (t 
 

2 
 

2 
 

) x(t)  

 x( t 
 

) 

 

 

 

Even 

 

69 
 



Products of DT Even and Odd 

 Functions Contd. 

 Two Odd Functions 
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Energy and Power Signals 
 Energy Signal 

 • A signal with finite energy and zero power is 

called Energy Signal i.e.for energy signal 

 0<E<∞ and P =0 
 • Signal energy of a signal is defined as the area 

under  the  square  of  the  magnitude  of  the 
 signal.  

 E x t  
 

2 
 dt 

 
x 
 

  
  

 

• The units of signal energy depends on the unit 
 of the signal. 

 
71 
 



Energy and Power Signals 
 

Power Signal 
 

Contd. 
 

• Some signals have infinite signal energy.  In 

that  caseit  is  more  convenient  to  deal  with 

 average signal power. 
 •  For power signals 

 0<P<∞ and E = ∞ 
 • Average power of the signal is given by 

 
P 
 

x 
 

lim 

 
T  
 

1 
 T 
 

T/2 
 

 

 T/2 
 

x t  
 

2 
 dt 
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Energy and Power Signals 

 Contd. 

 
• For a periodic signal x(t) the average 
 signal power is 

 P  

 

1 

 
x t  
 

2 
 dt 

 x 
 T 

 
 

 
T 
 

• T is any period of the signal. 
 
• Periodic signals are generally power 

signals. 
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Signal Energy and Power for DT 
 Signal 

 •A discrtet time signal with finite energy and zero power is called 

Energy Signal i.e.for energy signal 
 

0<E<∞ and P =0 
 

•The signal energy of a for a discrete time signal x[n] is 
 

 

 E 

 

 

 

x 

 

n 

 

2 

 
x 
 

 
 n  
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Signal Energy and Power for 

 DT Signal Contd. 

 The average signal power of a discrete time power signal 

x[n] is 
 

P 
 

x 
 

1 

 
lim 

 N 2N 
 

N 1 

  
 n N 

 

x n  

 

2 
 

For a periodic signal x[n] the average signal power is 
 

P 
 

x 
 

1 

  x n 2 

 
 

 Nn  N 
 

The notation 

 
 

 
 

means the sum over any set of 
 n  N 

 

 
  
  

  
 

consecutive n's exactly N  in length. 
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What is System? 
 

• Systems  process  input  signals  to  produce 
 output signals 

 • A system is combination of elements that 
 manipulates   one   or   more   signals   to 

accomplish  a  function  and  produces  some 
 output. 
 input 

 signal 
 

output 
 syste signal 

 m 
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Examples of Systems 
 - A circuit involving a capacitor can be viewed as a 

 system that transforms the source voltage (signal) 
 to the voltage (signal) across the capacitor 
 - A communication system is generally composed of 

 three sub-systems, the transmitter, the channel and 

the receiver.  The channel typically attenuates and 

 adds noise to the transmitted signal which must be 
 processed by the receiver 
 - Biomedical  system  resulting  in  biomedical  signal 

 processing 
 - Control systems 
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System - Example 
 

• Consider an RL series circuit 
 - Using a first order equation: 

 
R 
 

V(t) L 

 

di(t) 
 L 

 dt 
 

di(t) 
 

V(t) L 
 V(t) V V (t) i(t) 

 
R L 
 

 R L 
 dt 
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Mathematical Modeling of 

 Continuous Systems 

 Most continuous time systems represent how continuous 

 signals are transformed via differential equations. 

 E.g. RC circuit 
 

System indicatindvc( t) ve1ocity 
 

 v(t) 
 

1 

 
 v(t) 

 dt RC 
 

dv(t) 

 

c 
 RC 

 

s 
 

m 
 

v t) 

 

 

 

f 

 

(t) 

 dt 
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Mathematical Modeling of Discrete 

 Time Systems 

 

Most discrete time systems represent how discrete 

 signals are transformed via difference equations 

 e.g. bank account, discrete car velocity system 
 

y[n]  1.01y[n 1]  x[n] 

 

v[n]  

 

m 

 m  

 

v[n 1]  

 

 

 m  

 

f[n] 
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Order of System 
 

• Order of the Continuous System is the highest 

power  of  the  derivative  associated  with  the 

output in the differential equation 

 • For example the order of the system shown is 

1. 
 

m 

 

dv(t) 

 dt 

 

v t) f(t) 
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Order of System Contd. 
 

• Order of the Discrete Time system is 

the  highest  number  in  the  difference 

equation by which the output is delayed 

 • For  example  the  order  of  the  system 

shown is 1. 

 y[n] 1.01y[n 1] x[n] 
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Interconnected Systems 
 

• Parallel 
 • Serial (cascaded) 
 • Feedback 
 notes 

 

R 
 

C 
 

V(t) 

 

L 
 

L 
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Interconnected System Example 
 • Consider the following systems with 4 subsystem 

 • Each subsystem transforms it input signal 
 • The result will be: 
 - y3(t)=y1(t)+y2(t)=T1[x(t)]+T2[x(t)] 

 - y4(t)=T3[y3(t)]= T3(T1[x(t)]+T2[x(t)]) 
 - y(t)= y4(t)* y5(t)= T3(T1[x(t)]+T2[x(t)])* T4[x(t)] 
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Feedback System 
 

• Used in automatic control 
 - e(t)=x(t)-y3(t)= x(t)-T3[y(t)]= 

 - y(t)= T2[m(t)]=T2(T1[e(t)]) 
 -  y(t)=T2(T1[x(t)-y3(t)])= T2(T1( [x(t)] - T3[y(t)] ) ) = 
 - =T2(T1([x(t)] -T3[y(t)])) 
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Types of Systems 
 

• Causal & Anticausal 
 • Linear & Non Linear 
 • Time Variant &Time-invariant 
 • Stable & Unstable 
 • Static & Dynamic 
 • Invertible & Inverse Systems 
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Causal & Anticausal Systems 
 

• Causal system : A system is said to be causal 

if  the  present  value  of  the  output  signal 

 depends  only  on  the  present  and/or  past 

values of the input signal. 
 • Example:   y[n]=x[n]+1/2x[n-1] 
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Causal & Anticausal Systems 

 Contd. 

 
• Anticausal system : A system is said to 

be anticausal if the present value of the 

output signal depends only on the future 

 values of the input signal. 
 • Example: y[n]=x[n+1]+1/2x[n-1] 
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Linear & Non Linear Systems 
 

• A system is said to be linear if it satisfies the 
 principle of superposition 

 • For checking the linearity of the given system, 

firstly we check the response due to linear 

 combination of inputs 
 • Then we combine the two outputs linearly in 

the same manner as the inputs are combined 
 and again total response is checked 

 • If response in step 2 and 3 are the same,the 

system is linear othewise it is non linear. 
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Time  Invariant and Time Variant 

 Systems 

 • A system is said to be time invariant if a time 

delay or time advance of the input signal leads 

to a identical time shift in the output signal. 

 

y t) 

 

 

 

H x(t t 

 

)} 

 

i 
 

0 
 

 

 

t0 
 H{S  x(t)}}  

 
t0 
 

t0 
 HS   x(t)} 

 
y t) 
 

0 
 

t0 
 

S  y(t)} 
 

t0 
 S {H x(t)}}  

 
S H x(t)} 
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Stable & Unstable Systems 
 

•  A  system  is  said  to  be  bounded-input 

bounded-output stable (BIBO stable) iff every 

bounded input results in a bounded output. 

 i.e. 
 

t |x t)| M 

 
x 
 

 t |y t)| M 

 
y 
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Stable & Unstable Systems Contd. 
 

Example 
 - y[n]=1/3(x[n]+x[n-1]+x[n-2]) 

 
y[n]  

 

 

 

 

 

1 

 3 

 1 

 3 

 1 

 

x[n] x[n 1] x[n 2] 

 

(|x[n]| |x[n 1] | |x[n 2] |) 

 

(M M M ) M 

 3 
 

x x x x 
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Stable & Unstable Systems Contd. 
 

Example: The system represented by 
 y(t) = A x(t) is unstable ; A˃1 

 Reason: let us assume x(t) = u(t), then 

at every instant  u(t) will keep on 

multiplying with A and hence it will not 
 be bonded. 
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Static & Dynamic Systems 
 

• A static system is memoryless system 
 • It has no storage devices 
 • its output signal depends on present values 

of the input signal 

 • For example 
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Static & Dynamic Systems Contd. 
 
• A dynamic system possesses memory 
 • It has the storage devices 
 • A system is said to possess memory if its 

output  signal  depends  on  past  values  and 

 future values of the input signal 
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Example: Static or Dynamic? 
 

96 
 



Example: Static or Dynamic? 
 

Answer: 
 • The system shown above is RC circuit 
 • R is memoryless 
 • C is memory device as it stores charge 

because of which voltage across it can‟t 
 change immediately 

 • Hence given system is dynamic or 
 memory system 
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Invertible & Inverse Systems 
 

• If a system is invertible it has an Inverse System 
 

x(t) y(t) 
 System 

 

• Example: y(t)=2x(t) 
 

Inverse x(t) 

 System 
 

- System is invertible  must have inverse, that is: 
 - For any x(t) we get a distinct output y(t) 
 - Thus, the system must have an Inverse 
 • x(t)=1/2 y(t)=z(t) 

 
x(t) System y(t)=2x(t) 
 (multiplier) 

 

Inverse 
 System 
 (divider) 
 

x(t) 
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LTI Systems 
 

• LTI Systems are completely characterized by 

its unit sample response 

 • The output of any LTI System is a convolution 

of  the  input  signal  with  the  unit-impulse 

response, i.e. 
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Properties of Convolution 
 

Commutative Property 
 

x[n]*h[n]  
 

h[n]* x[n 
 

] 
 

Distributive Property 
 
x[n]*(h 
 

1 
 
[n]  

 
h 

 
2 
 
[n]) 

 
 

 
(x[n]*h 

 
1 
 
[n])  (x[n]*h 
 

2 
 
[n]) 

 

Associative Property 

 

x[n]*h 

 
[n]*h 

 
[n] 

 
 

 
1  2 

 (x[n]*h 
 1 

 
[n]) *h 
 

2 
 

[n] 

 
 

 
(x[n]*h 

 
2 
 
[n]) *h 
 

1 
 
[n] 
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Useful Properties of (DT) LTI Systems 
 • Causality: 

 

• Stability: 
 

h[n]  

  

 

0 n 0 

 
h[k]   

 
k  
 

Bounded Input ↔ Bounded Output 

 

for x[n] x 

  

 

max 

 

 

  

 y[n]  

 
 

 
x[k]h[n k] x 

 
max 
 

 
 

h[n k]  

 k  

 
k 
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Periodic Functions and 

 Fourier Series 
 



The Fourier 
 

Series 
 I/P 

 

Sinusoidal Inputs 
 

Linear Circuit 
 

OK 
 

O/P 
 

Nonsinusoidal Inputs 
 

Nonsinusoidal Inputs 
 

Sinusoidal Inputs 
 

Fourier Series 
 



The Fourier 
 

Joseph Fourier 
 1768 to 1830 
 

Fourier   studied the mathematical theory of  heat 
conduction. He established  the partial  differential 
equation governing heat diffusion and solved it by 
 using infinite series of trigonometric functions. 
 



The Fourier Series 
 

Fourier proposed in 1807 
 

A periodic waveform  f(t) could be broken down into an 

infinite  series of  simple sinusoids which,  when  added 

together, would construct the exact form of  the original 

waveform. 

 

Consider the periodic function 
 

f (t)  f (t  nT) ; n  1, 2, 3,  

 
T =  Period, the smallest value of T that satisfies the above 

Equation. 
 



The Fourier Series 
 The expression for a  Fourier Series is 

 

f t) a  

 

N 
 a cosnw 

 

N 
 t  bsinnwt 

 
0 
 

 n 0 

 
n 1 
 

 n 0 

 
n 1 
 

2  
 

a 
 

a 

 

, and b are real and are called 

 

and 
 

0, n n 
 

Fourier Trigonometric Coefficients 
 Or, alternative form 

 
N 
 f t) C  C cos(nw 

 

w 
 

t ) 

 

0 
 

 
 T 

 

0 
 

C a C 

 

 n 0 n 

n 1 

 
are the Complex Coefficients 
 

0 
 

0 and n 

 
Fourier Series = a finite sum of harmonically related sinusoids 
 



The Fourier Series 
 N 

 f t) C  

 
C cos(nwt ) 

 
0 
 

 
 n 1 
 

n 0 n 
 

C 
 

is the average (or DC) value of f(t) 
 0 

 
For  n = 1 the corresponding sinusoid 

is called  the fundamental 
 

For  n = k the corresponding sinusoid 

is called  the kth  harmonic term 
 

Similarly, w0  is call  the   fundamental frequency 

kw0 is called the  kth harmonic frequency 
 

Ccos(wt ) 

 
1 0 1 
 

Ccos(kwt ) 

 
k 0 k 
 



The Fourier Series 
 

Definition 
 N  

 A   Fourier Series  is an accurate representation of a 

periodic signal and consists of the sum of sinusoids at 

the fundamental and harmonic frequencies. 

 

The waveform f(t) depends on the amplitude and  phase 

of every harmonic components, and we can generate any 
 non-sinusoidal waveform by an appropriate combination 
 of  sinusoidal functions. 
 



The Fourier Series (Dirichlet’s Conditions) 
 

To be described by the Fourier Series the waveform  f(t) 

must satisfy the following mathematical properties: 
 

1. f(t) is a single-value function except at possibly a finite number of points. 
 
2. The integral 
 

for any t0. 
 

3. f(t) has a finite number of  discontinuities within the period T. 
 4. f(t) has a finite number of  maxima and  minima within the period T. 
 

t0 T 

  
 

f t)dt  

 
t 0 
 

In practice,  f(t) = v(t) or i(t) so the above 4 conditions are 

always satisfied. 
 



Periodic Functions 
 

A function  f   is periodic 

if it is defined for all real  

 and if there is some positive number, 
 

 

 
T such that    f  
 

T f  

 



f 

 

 

 

 

 

 

 

0 

  

 

T 

 



f 

 

 

 

 

 
 

 

0 

  

 

T 

 



f 

 

 

 

 

 

 

 

0 

  

 

T 

 



Fourier Series 
 

f  be a periodic function with period 

 
The function can be represented by 
 a trigonometric series as: 
 

  

 

2  

 

f a 

 
 a cosn  

 
 b sinn  

 
0 
 

 
 n 1 
 

n 
 

 
 n 1 
 

n 
 



a  

 

 

 a cosn  
 

 

  b sinn  

 
0 
 

 
 n 1 
 

n 
 

 
 n 1 
 

n 
 

What kind of trigonometric (series) functions 
 are we talking about? 
 

cos 

 

 

 

, cos 

 

2  

 

, cos 

 

3  

 

 

 

and 

 sin 

 

 

 

, sin 

 

2  

 

, sin 

 

3  

 

 

 



0 
 

0 

 

 

 

2  

 

cos  

 

cos 2  

 

cos 3  

 



0 
 

0 
 

sin  

 

 2  

 
sin 2  sin 3  

 



We want to determine the coefficients, 
 
a 
 

n 
 

and b 
 

n 
 

Let us first remember some useful 

integrations. 

 



 

  
 

cosn cosm d  

 
 

 

 

 

1 
  

 

 

 cos n  
 

m d  

 

1 
  

 

 

 cos n m d  
 2 

 
 

 

 
 

2 
 

 
 

 
 

cos n cosm  d 

 
0 n m 

  
 

 

 
 

 

 
 

cos n cosm  d 

 
 n m 

  
 

 

 



 

 

 

 

sinn cosm d  

 
  

  
 

1 
  

 
sin n m 
 

1 
 d  

  
 

sin n m d  

 2 
 

 

 

 
 

2 
 

 
 

 
 

sinn cosm  d 0 

   
 

 

for all values of m. 
 



 

  
 

sinn sinm d  

 
 

 

 

 

1 

  
 

 

 cos n  
 

m  d   

 

1 

  
 

 

 cos n m d  
 2 

 
 

 

 
 

2 
 

 
 

 

 
sinn sin 

 
m d 0 

 
n m 
  

 
 

 

 

 

 
 

sinn sin 

 
m d  

 
n m 
  

 
 

 



Determine a 
 

0 
 Integrate both sides of (1) from 

 
 to 

  

 

 

 
 

 
f 
   

 

 

d  
 

 

 
 

 
 

 
 

  
  

 
 

 

a 
 

 0 
  
 

 
 

 
 n 1 
 

a 
 

n 
 

cosn  
 

 
 n 1 
 

b 
 

n 
 

sinn  
 

 
  
 

d  
 



 

 f 
 

 

 

d  
  

 
  

  ad  
 

 

  
 a cosn  

 

 

 d  
  

 
 

 

0 
 

 

 

 
 

 
 

 
  

 

n  
 1 

 

n  
  

 
 

  
 

 

 

 
 

 
 

 
 n 1 

 

b 
 

n 
 

sinn  
 

 

 

 
  
 

d  
 

f d  

 
 ad 0 0 

 
 

 
 

 

 
 

 
 

0 
 



 

 f d 2 a 

 
 

 
 

 

 
 

0 

 

0 0 

 

a  
 

1 
 f d  

 
0 
 2  

 
 

 
 

 

a 
 

0 
 

is the average (dc) value of the 
 

function, 

 

f 
 

 

 



You may integrate both sides of (1) from 
 
0 to 2  
 2  

 

instead. 
 

 
 

 

 

0 
 

 

 

f  
 

2 
  a 
  0 

 

d  
 

 

  

 
 

 
a 

 
n 
 

cosn  

 

 

 
 

 
b 

 
n 
 

sinn  

 

 

  

 

d  

 
0 
  n 1 

 
n 1  
 

It is alright as long as the integration is 

performed over one period. 

 



2  

 f 
 

 

 

2  

  
 

d  
 

2  

 ad  
 

 

   
 a cosn  d  

  
 

0 
 

 

 

2 

 

0 
 

2  

  
 

0 
 

 

  
  
 n 1 

 

 
 

0 
 

b 
 

n 
 

n  
 1 

 

sinn  
 

2  

 

n 
 

 

  

  
 

 
  
 

d  

 

 
 

 f  
 0 

 

d  
 

 
 

a 
 

0 
 0 

 

d 0 0 
 



 

 f 
 

 

 

 

 

 

 

d  

 

 

 

2  

 

a 

 

0 0 

 

 
 

0 
 

1 

 

0 
 

2  

 a 
 

0 
 

 
 2  

 
 

 
f d  
 0 

 



Determine a 
 

Multiply (1) by  cosm  

 

n 
 

and then Integrate both sides  from 
  

 

 

 

to 
 

 
  

 f 
 

 

 

 

 

 

 

 
 

 

 

 

 
 

 
 

 

cosm  
 

 

 
a  a 

 

d  
 

 

 
cosn  bsinn  

 

 

 cosm d  
  

 
 

 

 0 

  
 

 
 n 1 
 

n 
 

 
 n 1 
 

n  
  

 



Let us do the integration on the right-hand-side 
 one term at a time. 
 
First term, 
  

 a 

 

cosm d  

 

 

 

0 

 

 
 

 
 

0 
 

Second term, 
 

 

 

 

 

 

 
a 

 n 1 

 

ncos 
 

n cosm d  

 



Second term, 
 

 

 

 

 

 

 

 

 
 

 n 1 
 

a 

 
n 
 

cosn cosm d  

 
a  

 
m 
 

Third term, 
 

 

 

 

 

 

 

 

 
 

 n 1 
 

b sin n  
 

n 
 

cosm  

 
d 0 

 



Therefore, 
 

 

 f cos 
 

m d a  

 
 

 
 

 

1 

 

m 
 

 

 a 
 

m 
 

 
 

 
   

f cosm d  
   

m 1, 2,  
 



Determine b 
 

Multiply (1) by  sinm  

 

n 

 

and then Integrate both sides  from 
 

 to 

  

 f sin 
 

 

 
m d  

 
 

 
 

 

 
 

 

  
 

 
 

 

  
  
 

a 

 
0 
 

 

 

 

 
 

 n 1 
 

a cos n  
 

n 
 

 

 

 

 
 

 n 1 
 

b sin n  
 

n 
 

 

  
  
 

sinm d  

 



Let us do the integration on the right-hand-side 
 one term at a time. 
 
First term, 
 

 

 

 

 

 

 

a 

 
0 
 

sinm  

 
d 0 

 
Second term, 
 

 

  
 

 
 

 

 
 

 n 1 
 

a cos n  
 

n 
 

sinm d  

 



Second term, 
 

 

 

 

 

 

 

 

  

 
ancosn 

 n 1 
 

sinm d 0 

 
Third term, 
 

 

 

 

 

 

 

 

 
 

 n 1 
 

b 

 
n 
 

sinn sinm d  

 
b  

 
m 
 



Therefore, 
 

 

 

 

 

 

 

f  

 

1 
 

sin m d  

 
 

 

b 
 

m 
 

 

 

b 
 

m 
 

 
  

 
 

 
f sin m d  m 
   

1,2,  
 



The coefficients are: 
 

a  

 

1 

 

 

 f d  

 
0 
 

a  

 

2  
 
1 
 

 
 

 
 

 
 f cosm d  

 
m 1, 2,  

 
m 
  

 
 

 
 

 

b 
 

m 
 

1 

  
  

 
 

 

 
 f sinm d  

  
 

m 1, 2,  

 



We can write n in place of m: 
 

a  

 

1 

 

 

 f d  

 
0 
 2  

 
 

 

 
 

 
 

a 
 

b 

 

n 
 

 
 

 

 

1 
  

 
 

 
1 
 

f cos n d  
   

 

 f sin n d  
 

n 1,2,  
 

n 1,2,  

 
n 
  

 
 

 
 

 



The integrations can be performed from 
 
0 to 

 
a  

 

1 

 

2  

 2  

 f 
 

instead. 
 

d  

 
0 
 2  

 
 

 
0 
 

a 
 

b 

 

n 

 

 

 

 

 

1 
  

   

1 

 

2  

 
0 

 

2  

 

f cos n d  

 

f sin n d  

 

n 1,2,  

 

n 1,2,  

 
n 
  

 
 

 
0 
 



Example 1. Find the Fourier series of 
 the following periodic function. 
 

f 
 

A 
 

0 
 

-A 
 

 

 

 2  3  4  

 

f A  when 

 A  when 

 
f 2 f  

 

 

 

5  

 

0  

 2  

 



2  

 

1 
 

 
 

f 

 

 

 

0 
 2  

 
1 
  

 

 
 

 
 

 
 0 

 
 

 f  
 

d  
 

2  

 d  
 

f d  

 

 

 
 

 

 

 

 
 

2  
 
1 
  

 

0 
 

 

  
 

 
 

2  

 Ad  Ad  
 

 
 

 
 

 
 

 

 

 
 

2  
 
0 

 

0  
 

 
 



2  

 
1 

  
 

f 

 

 

 

 

 

 

 

cos 

 

n  

 

d  

 

n 
  

 
1 

  
 

 
 

 
 

0 

 

 

 A cos n  
 

2  

 d  
 

A cos 

 

 

 
n d  
 

 
 

 

 

 
 

 

 

 
 
1 

 
 

 

 

  
  
 

0 
 

A 

 

sinn  

 n 

 

 

  
  
 

 

 
 

 0 
 

1 

  

 

 
 

 

 
 

  
 

sinn  
A 
 n 

 

 

  
  
 

 
 

2  
 

0 

  

 



2  

 
1 
  

 

f 

 

 

 
 

 
1 

 

sin 
 

 
 

0 
 

 
  

 

n d  
 

2 

  
  

  
 

A sin n  
 

d   
 

 
 

A sinn d  
 

 
 

 
 
1 

 
 

 

 0 

 

 
 

 
  
 

cosn  
A 
 n 

 

 
  

  
 0 
 

 
 

1 

 
 

 

 
 

 
  
  
 

A 

 

cosn  
 

n 

 

 
 

2  
  

  
  

 

 
 

A 

 
n  
 

cos n  

 
cos0 cos2n  

 
cosn  

 



n  

 

A 

 n  

 

cos n  

 

cos0 cos2n  

 
cosn  

 

 

 

A  

 

1 1 1 1 

 

 

 

n  
 

 

 

4A 

 n  

 

when n is odd 

 



A 
 n 

 n  
 

cos n  

 

cos0  

 
cos2n cosn  

 

 A 1 

 
1 1 1  

 n  
 
 

 

0 

 

when n is even 

 



Therefore, the corresponding Fourier series is 
 
4A  

 sin  
 

1 

 
sin3  
 

1 

 
sin5  
 

1 

 
sin7  
 

 

 
 

  
 

 
 

3 5 7 
 

 
 

In writing the Fourier series we may not be 
 able to consider infinite number of terms for 

practical reasons.  The question therefore, is 

 - how many terms to consider? 
 



When we consider 4 terms as shown in the 
 previous slide, the function looks like the 

following. 
 

1.5 

 

1 

 

0.5 

 

f(  

 
) 

 
0 

 

0.5 

 

1 

 

1.5 

 

 

 



When we consider 6 terms, the function looks 
 like the following. 
 

1.5 

 

1 

 

0.5 

 

f(  

 
) 

 
0 

 

0.5 

 

1 

 

1.5 

 

 

 



When we consider 8 terms, the function looks 
 like the following. 
 

1.5 

 

1 

 

0.5 

 

f(  

 
) 

 
0 

 

0.5 

 

1 

 

1.5 

 
 

 



When we consider 12 terms, the function looks 
 like the following. 
 

1.5 

 

1 

 

0.5 

 

f(  

 
) 

 
0 

 

0.5 

 

1 

 

1.5 

 

 

 



The red curve was drawn with 12 terms and 
 the blue curve was drawn with 4 terms. 
 

1.5 

 

1 

 

0.5 

 

0 

 

0.5 

 

1 

 

1.5 

 

 

 



The red curve was drawn with 12 terms and 
 the blue curve was drawn with 4 terms. 
 1.5 

 

1 

 

0.5 

 

0 

 

0.5 

 

1 

 

1.5 

 0 2 
 

4 6 

 
 

 

8 10 

 



The red curve was drawn with 20 terms and 
 the blue curve was drawn with 4 terms. 
 1.5 

 

1 

 

0.5 

 

0 

 

0.5 

 

1 

 

1.5 

 0 2 
 

4 6 

 
 

 

8 10 

 



Even and Odd Functions 
 
(We are not talking about even or 
 odd numbers.) 
 



Even Functions 
 

f(  

 

 

 

Mathematically speaking - 
 
f  f  

 

The value of the 
 function would 

be the same 
 when we walk 
 equal distances 
 along the X-axis 

in opposite 
 directions. 
 



Odd Functions 
 

f(  

 

 

 

Mathematically speaking - 
 
f f  

 

The value of the 
 function would 

change its sign 
 but with the 
 same magnitude 
 when we walk 

equal distances 
 along the X-axis 
 in opposite 

directions. 
 



Even functions can solely be represented 

by cosine waves because, cosine waves 

 are even functions.  A sum of even 
 functions is another even function. 
 

5 

 

0 

 

5 

 
10 

 
0 

 
10 

 
 

 



Odd functions can solely be represented by 
 sine waves because, sine waves are odd 
 functions.  A sum of odd functions is another 

odd function. 

 
5 

 

0 

 

5 

 
10 

 
0 

 
10 

 
 

 



The Fourier series of an even function  f  
is expressed in terms of a cosine series. 

 

f a 

 

 

  a cosn  

 
0 
 

 
 n 1 
 

n 
 

The Fourier series of an odd function  f  
 
is expressed in terms of a sine series. 
 

f  

 

 

 
 

 n 1 

 

b 

 
n 
 

sinn  

 



Example 2. Find the Fourier series of 
 the following periodic function. 
 f(x) 

 

x 

 
 

 
0 
 

 

 

3  

 

5  

 

7  

 

9  

 

f x   x2 when 

 

 x  

 

f  

 

2  

 

f 
 

 

 

 

 

 

 



 

 

 

 

1 
 

1 
 

2 
 a 

 

 

 

f 

 

 

 

0 
 2  

 
 

 
 

 

3 

 

x dx  

 
x  

 

 
 

2  
 
2 
 

x dx 
  

 

 
 

1 x  
   

 
 

 

 
 

2  
 

 
 

3 
 

 
 

3 
 x  

 



 

 
1 
  

 

f 

 

 

 

 
 
1 

 

 
 

 
 

 
  2 

 

x cosnxdx 

 

 

 
 

  
 
 

 
 

 
 

 

x cos 
 

nxdx 
  

 
Use integration by parts.  Details are shown 
 in your class note. 
 



 

 

4 

 2 
 

cosn  
 n 

 

an  

 

4 

 2 
 

whennisodd 

 n 
 

an  

 

4 

 2 

 

whenniseven 
 n 

 



This is an even function. 
 
Therefore, 
 

b 
 

n 
 

0 

 The corresponding Fourier series is 
 

 

 

2 

 
4 cosx 

 

cos 

 
 

 

2x 

 2 

 

 

 

cos3x 

 2 

 

 

 

cos4x 

 2 

 

 

 

 

 
 

 3 
 

 
 

2 3 4 

 
 

 



Functions Having Arbitrary Period 
 
Assume that a function f t  has 

period, T .  We can relate angle 

 (  ) with time (t ) in the following 

manner. 
 w t 

 w is the angular velocity in radians per 

second. 

 



2  

 

f 

 f is the frequency of the periodic function, 

 t 

 
 2 ft 

 
Therefore, 
 

where f  

 
2  

 

1 
 
T 

 
 

 T 
 

t 

 



 

 

2  

 T 

 

t d  

 

2  

 T 

 

dt 

 
Now change the limits of integration. 
 

  

 

2  

 T 

 

t t  
 

T 

 2 

 
   

 

2  

 T 

 

t t  
 

T 

 2 

 



0 
 

 

 

1 

 2  

 

 

 f d  

  
 

a 

 
0 
 

1 

 
 

 T 
 

 

  

 

 
 

T 
 
2 

 t 
 T 

 2 

 



n 
 

 

 

1 

  
 
 

 

2 
 

 

 f cos n d  
  

 

T 

 
2 n 

 

n 1,2,  

 

an 

 

 
 T 

 
 

  
 

f t cos  
 T  

 2 
 

T 

 

t dt n 

  
 

1, 2,  
 



n 
 

 

 

1 

  
   

 

 f sin n d  
  

 

n 1,2,  

 

T 
 

bn 

 

 

 

2 

 T 

 

 

  

 

f t sin  

 T  
 2 
 

2 n 

 T 

 

t dt n 

  
 

1, 2,  

 



Example 4. Find the Fourier series of 
 the following periodic function. 
 

f(t) 
 

3T/4 
 

0 
 T/4 

 
-T/2 
 

f t t 

 

T/2 
 

when  

 
T 

 

T 
 

T 

 4 

 

t  

 
T 

 

t 
 

2T 
 

T 

 4 

 3T 

 
t  

 2 
 

when 
 4 

 

t  
 4 

 



f  t 

 This is an odd function. Therefore,a 
 

T 

 

n 
 

0 

 

bn 

 

 

 

 

 

2 
 
T 

 

4 

 T 

 

 

 
0 
 

 

 
0 
 

f t sin  

  
 

T 

 2 

 
f t sin  

  
 

2 n 
 
T 

 

2 n 

 T 

 

t dt 

  
 

t dt 

  
 



T 

 
4 
 

4 

 2 n 
 n 

 

 
 T 

 

4 

 

 
 0 
 
T 
 
2 

 

t sin  
  

 
T 

 

T 

 

t dt 
  
 

2 n 

 
 

 T 
 

 
 T 
 
4 
 

t  
 

 
2 

 

sin  
   
 

T 

 

t dt 
  
 

Use integration by parts. 
 



n 
 

 

 

4 

 T 

 

 

 2  

  
 

T 

 2 n 

 

2 
 
 sin  
  

 

n  

 2 

 

 

  
  
 

 

 

 
 

2T 
 

n2  

 

2 
 

sin  

  
 

n  

 2 

 

 
 

 

  
 

b 

 
n 
 

when n is even. 
 

0 
 



Therefore, the Fourier series is 
 

2T  

 2  
 

2  

 
sin  
 

 

 
t  
 

1 

 2 
 

6  

 
sin  
 

 

 
t  
 

1 

 2 
 

10  

 
sin  
 

 

 
t  
 

 

    
  

 
 

 
T  3 

 
T  5  T  

 
 

 



The Complex Form of Fourier Series 
 
f a 

 

 

 
 a cosn  

 

 

 
 b sinn  

 
0 
 

 
 n 1 
 

n 
 

 
 n 1 
 

n 
 

Let us utilize the Euler formulae. 
 



The  nth harmonic component of (1) can be 

 expressed as: 
 
a 

 
n 
 

cosn  

 
b 

 
n 
 

sinn  

 
a 

 

e 

 n 

 

jn  
 e 

 
2 

 

jn  
 

b 

 

e 

 n 

 

jn  
 e 

 
2i 

 

jn  
 

a 

 

e 

 n 

 

jn  

 e 
 
2 

 

jn  

 ib 
 

e 

 n 

 

jn  

 e 
 
2 

 

jn  

 



cosn b 

 a jb 

 

n 
 

sinn  

 
a jb 

 
 

 
n 
  

  
 

n 
 

2 
 

 
  
 

e 
 

jn  
  

 
n 
  

  
 

n 
 

2 
 

 
  
 

e 
 

jn  
 

Denoting 
 

a 

 c  
 

n  
  

 

n 

 

jb 

 2 

 

n 

 

 

 
, 
  

  
 

c 
 

n 
 

a 

  
  
 

n 
 

jb 

 2 

 

n 
  

  
 

and c 
 0 

 
a 

 
0 
 



a cos n b 

 
n n 
 

jn  

 

sinn  

 jn  

 c 
 

n 
 

e c 
 

n 
 

e 
 



The Fourier series for f   

 can be expressed as: 
 

 

 f  

 

jn  
 c  ce 

 
c e 

 

jn  

  
 

0 
 

 

  c 

 

 
 n 1 
 

jn  
 e 

 

n n 
 

 
 n  

 

n 
 



The coefficients can be evaluated in 
 the following manner. 
 

 a  jb 

 

 

 
c  
 

n n 
  

 
n 
 

 

 

 
 

1 

  
 

2  
 

 

 f cosn d  
 

j 

  
 

 

  
 

f sinn d  

 

 

 

 

 

2  
 

1 
 

2  
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 f  
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2  
 

cos n  

 

jn  
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jsinn d  

 



 a  jbn 
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n 
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 f  
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 f  
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jsinn d  
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n 
 

a 
 

n 
  

  
 

jb 

 
n 
 

2 
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n 

  
 

a jb 

 
n n 
 

2 
 

 

  
 

Note that 
 

c 
 

is the complex conjugate of 
 n 

 c 
 

n 
 

Hence we may write that 
 

1 

 
c  f  
 

jn  
 e 

 
d  
 

n 
 2  

 
 

 
 

 

n 0, 1, 2,  
 



The complex form of the Fourier series of 
 
f  

 
withperiod2  
 

 

 

is: 
 

jn  

 f  
 

 
 

c 
 

n 
 

e 
 n  

 



Example 1. Find the Fourier series of 
 the following periodic function. 
 

f 
 

A 
 

0 
 

-A 
 

 

 

 2  3  4  

 

f A  when 

 A  when 

 
f 2 f  

 

 

 

5  

 

0  

 2  

 



5 

 
f(x) 

 

 

 

A if 

 

0  x   

 
A 

 

if 

 

  x  2  

 
0 

 

otherwise 

 

2  

 
A0  

 

A0  

 

1 
 

2  

 

0 

 

 
  

  
 

f(x)dx 

 0 
 



An 

 

A1 

 
A5 

 

1 

 

 

 

0 

 
0 

 

8 

 

1  
  
   
 

2  

 f(x) cos(n x)dx 
 0 

 

A2 0 A3  

 
A6 0 A7  

 

0 A4 0 

 
0 A8 0 

 



n 
 

 

 

1 

 
 

 

 

  
  
 

2  

 f(x) sin(n x)dx 
 0 

 

B1  6.366 

 

B2 

 

 

 

0 

 

B3  2.122 

 

B4 

 

 

 

0 

 

B5  1.273 

 

B6 

 

 

 

0 

 

B7  0.909 

 

B8 

 

 

 

0 

 



Complex Form 
 

 

 jn  

 
c  
 

 

 1 
 

jn  
 f e d  

 
f  
  

 n  
 

c 
 

n 
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The Fourier Series 
 Recall from calculus that sinusoids whose frequencies are 

integer multiples of some fundamental frequency f0 = 1/T 

form an  orthogonal set of functions. 
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The Fourier Series 
 The Fourier Trigonometric Coefficients can be obtained 

from 
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The Fourier Series 
 To obtain ak 

 

T 
 f t)coskw 

 

T 
 t dt  a 

 
coskwt dt 

 
 

 
0 
 

N 
 
 

 

T 
 

0 
 

(a cosnw 
 

 
 

0 
 

t  b 
 

0 0 
 

sinnwt)coskwt dt 

 
 

 
0 
 

n 0 
 

n 0 0 
 n 1 

 
The only nonzero term is for  n = k 
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Similar approach can be used to obtain bk 

 



Example 1  determine Fourier Series and plot for N = 7 
 

average or DC value 
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Example 1(cont.) 
 

An even function exhibits symmetry around the vertical axis 

 at  t = 0 

 
so that  f(t) = f(-t). 
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Example 1(cont.) 
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Symmetry of the Function 
 

Four types 
 

1. 
 2. 
 3. 
 4. 
 

Even function 
 

Even-function symmetry 

Odd-function symmetry 
 Half-wave symmetry 
 Quarter-wave symmetry 
 

f (t)  f ( t) 

 
4 
 

All bn = 0 
 

T/2 
 a 

 

 

 

f t)cosnw 

 

t dt 

 

n 
 

 
 

0 
 T 

 
0 
 



Symmetry of the Function 
 

Odd function 
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Symmetry of the Function 
 

Quarter-wave symmetry 
 

Odd & Quarter-wave 
 

All an = 0 and bn = 0 for even values of  n  and a0 = 0 
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Symmetry of the Function 
 For Even & Quarter-wave 

 

All bn = 0 and an = 0 for even values of  n  and a0 = 0 
 

a  
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T/4 
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n 
 

 
 

0 
 T 
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Table 15.4-1 gives a summary of  Fourier coefficients 

and symmetry. 
 



Example 2  determine Fourier Series and N = ? 
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Example 2(cont.) 
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Example 2(cont.) 
 

The Fourier Series is 
 

N 
 f t) 3.24 

 

1 

 
sin 
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sinnwt ; for oddn 
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32 
 2 
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 The first 4 terms (upto and including N = 7) 
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 25 

 

sin 20t  

 

1 

 49 

 

sin 28t) 

 Next harmonic is for N = 9 which has magnitude 
 3.24/81 = 0.04  < 2 % of  b1 ( = 3.24) 
 

Therefore the first 4 terms (including N = 7) is enough for 

the desired approximation 
 



Exponential Form of the Fourier Series 
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Exponential Form of the Fourier Series 
 or 
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where the  complex coefficients are defined as 
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Example 3  determine complex Fourier Series 
 

Even function 
 

The average value of  f(t) is zero 
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Example 3(cont.) 
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Example 3(cont.) 
 

Since  f(t) is even function, all Cn are real and = 0 for n even 
 

For  n =  1 
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Example 3(cont.) 
 

The complex Fourier Series is 
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Example 4  determine complex Fourier Series 
 

Even function 
 

Use 
 

jnw 
 

0 
 

m 

 1 
 C  

 

T/4 
 1e 

 
mt 

 dt 
 

n 
 T 

 
 

 
T/4 

 

1 
  e 

 
 mt  T / 4 

 | 
 mT 

 
1 
 

mT 
 

T /4 
 

/4 mT/4 
  

 mT 
 

 
 

e e 
 

 
 



Example 4(cont.) 
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The Fourier Spectrum 
 The complex Fourier coefficients 
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The Fourier Spectrum 
 

The Fourier Spectrum  is a graphical display of the 
 amplitude and phase of the complex Fourier coe 
 at the fundamental and harmonic frequencies. 
 
Example 
 

A periodic sequence of pulses each of width  
 



The Fourier Spectrum 
 The Fourier coefficients are 
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The Fourier Spectrum 
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The Fourier Spectrum 
 L'Hopital's rule 
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The Truncated Fourier Series 
 A practical calculation of the Fourier series requires that 

we truncate the series to a  finite number of terms. 
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The error for  N terms is 
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We use the mean-square error (MSE) defined as 
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MSE is minimum when Cn =  Fourier series‟ coefficients 
 



The Truncated Fourier Series 
 

overshoot 
 

 10% 
 



Circuits and Fourier Series 
 It is often desired to determine the response of a circuit 

excited by a periodic signal vS(t). 
 

Example 15.8-1  An RC Circuit vO(t) = ? 
 

R 1 ,  C  2 F,  T   sec 

 

Example 15.3-1 
 

An RC circuit excited by a periodic voltage vS(t). 
 



Circuits and Fourier Series 
 Each voltage source 

 is a term of the 
 Fourier series of  vs(f). 

 

An equivalent circuit. 
 



Example 5 
 (cont.) 
 

Each 
 input 
 is a 
 Sinusoid. 

 

Using 
 phasors 

to find 

 steady-state 
 responses 

 to the 
 sinusoids. 

 



Example 5 (cont.) 
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 The steady state response vO(t) can then be found using 

 superposition. 
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Example 5 (cont.) 
 

The impedance of the capacitor is 
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Example 5 (cont.) 
 

The steady-state response can be written as 
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Example 5 (cont.) 
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Properties of Fourier Series 
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 Time Shift 
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phase shift linear in frequency with amplitude unchanged 
 



 Time Reversal 
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 Multiplication 
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Continuous-Time Signal Analysis: 

 The Fourier Transform 
 



Chapter Outline 
 

• Aperiodic Signal Representation by Fourier Integral 
 • Fourier Transform of Useful Functions 
 • Properties of Fourier Transform 
 • Signal Transmission Through LTIC Systems 
 • Ideal and Practical Filters 
 • Signal Energy 
 • Applications to Communications 
 • Data Truncation: Window Functions 
 



Link between FT and FS 
 

Fourier series (FS) allows us to represent periodic 

signal in term of sinusoidal or exponentials ejnwot. 

 

Fourier transform (FT) allows us to represent 
 aperiodic (not periodic) signal in term of exponentials 

ejwt. 
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Link between FT and FS 
 

xT 

 

xT(t) 
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As T0 gets larger and larger the fundamental frequency w0 gets smaller and smaller so 

the spectrum becomes continuous. 
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The Fourier Transform Spectrum 
 

The Fourier transform: 
  

 
X(w) 
 

  
  

 

jwt 

 x(t)e 
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X(w) 

 

The Amplitude (Magnitude) Spectrum 
 

The Phase Spectrum 
 

The amplitude spectrum is an even function and the phase is an odd function. 
 

The Inverse Fourier transform: 
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Example 
 Find the Fourier transform of  x(t) = e-atu(t), the 

magnitude, and the spectrum 

 Solution: 
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How does X(w) relates to X(s)? 
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Since the jw-axis is in the region of convergence then FT exist. 
 



Useful Functions 
 Unit Gate Function 
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Useful Functions 
 Interpolation Function 

 
sinc(x) 
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sin 
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Example 
 Find the FT, the magnitude, and the phase spectrum 

of x(t) = rect(t/ ). 

 
Answer 
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dt sinc(w /2) 

 

What is the bandwidth of the above pulse? 
 

The spectrum of a pulse extend from 0 to . However, much of the spectrum is 

concentrated within the first lobe (w=0 to 2 / ) 

 



Examples 
 Find the FT of the unit impulse (t). 

 Answer 
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Find the inverse FT of (w). 
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Examples 
 Find the inverse FT of (w- w 0). 

 Answer 
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Find the FT of the everlasting sinusoid cos(w 
 

0t). 
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Examples 
 Find the FT of a periodic signal. 

 Answer 
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n 0 0 
 

TaketheFT of  both sideand use linearity 
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Examples 
 Find the FT of the unit impulse train  

 Answer 
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Properties of the Fourier Transform 
 •  Linearity: 

 

•  Let 
 

then 
 

x t  

 

and 
 X w  y t Y w  

 
x t  y t  X w  w Y

 
•  Time Scaling: 
 

•  Let 
 

x t  
 

then 
 x at 

 

X w  
 

1 w  

  X   
 

Compression in the time 
domain results in expansion in 
the frequency domain 
 

a 
 

 

 

a 

 

 

 Internet channel A can transmit 100k pulse/sec and channel B can transmit 200k 

pulse/sec. Which channel does require higher bandwidth? 
 



Properties of the Fourier Transform 
 •  Time Reversal: 

 

•  Let 
 

x t  wX   
 

then   x( t)  X ( w) 

 Example: Find the FT of eatu(-t) and e-a|t| 

 

•  Left or Right Shift in Time: 
 

•  Let 
 

Time shift effects the phase 
 and not the magnitude. 
 

x t  wX   
 then 

 x t  t  
 

0 
 

jwt 

 X w e 
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Example: if x(t) = sin(wt) then what is the FT of x(t-t0)? 
 

Example: Find the FT of 

 

at t 

 e 
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Properties of the Fourier Transform 
 •  Multiplication by a Complex Exponential (Freq. Shift Property): 

 

•  Let 
 

then 
 

x t  
 

jwt 

 

X w  

 x t)e 
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 X(w w 
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•  Multiplication by a Sinusoid (Amplitude Modulation): 
 

Let 
 

then 
 

x t X w  
 

xt cos wt  
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X w w 
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 2 

 

0 0 
 

cosw0t is the carrier, x(t) is the modulating signal (message), 
x(t) cosw0t is the modulated signal. 
 



Example: Amplitude Modulation 
 x(t) 

 Example: Find the FT for the signal 
 

x(t)  rect(t/ 4) cos10t 
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Amplitude Modulation 
 

Modulation 
 

 

 

Demodulation 
 

(t) cosw t 0.5m(t)[1 cos2wt] 

 
 (t)  

 
m(t) cosw 
 

AM 
 t 

 
c c 
 AM c 

 Then lowpass filtering 
 



Amplitude Modulation: Envelope Detector 
 



Applic. of Modulation: Frequency-Division Multiplexing 
 

1- Transmission of different signals 
 over different bands 
 

2- Require smaller antenna 
 



Properties of the Fourier Transform 
 

•  Differentiation in the Frequency Domain: 
 

•  Let 
 

then 
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x t X w  
 
n n 

 x t) (j) 
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X(w) 
 dw 

 
•  Differentiation in the Time Domain: 
 

Let 
 x t  wX   

 n 

 
then d 
 

dt 
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x t) ( 

 

n 
 jw) 

 
X(w) 
 

Example: Use the time-differentiation property to find the Fourier Transform of the 

triangle pulse x(t) = (t/ ) 

 



Properties of the Fourier Transform 
 •  Integration in the Time Domain: 

 

Let 
 

Then 
 

x t X w  
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x( )d  
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 X(w) X(0) (w) 
  

  
 

jw 
 

•  Convolution and Multiplication in the Time Domain: 
 

Let x 
 

y 
 Then 

 

t X w  

 t  Y w  

 x(t)  y(t)  X (w)Y(w) 
 

x t)x(t)  
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 X(w)  X (w) 
 

Frequency convolution 
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Example 
 Find the system response to the input x(t) = e-at u(t) if the system impulse response is 

h(t) = e-bt u(t). 
 



Properties of the Fourier Transform 
 • Parseval’s Theorem: since x(t) is non-periodic 

and has FT X(w), then it is an energy signals: 
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 dt  
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X w  
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 dw 
 

 

 Real signal has even spectrum X(w)= X(-w), 
 

Example 
 

1 

 E  
  

 

 

 
0 
 

2 
 X w dw 

 

Find the energy of signal x(t) = e-at u(t). Determine the frequency w so that the energy 

contributed by the spectrum components of all frequencies below w is 95% of the 

signal energy EX. 

 
Answer: w=12.7a rad/sec 
 



Properties of the Fourier Transform 
 

•  Duality ( Similarity) : 
 

•  Let 
 

then 
 

x t  wX   

 
X (t)  2 x( w) 

 





Sampling Theorem 
 A real signal whose spectrum is bandlimited to B Hz [X(w)=0 for |w| >2 B ] can be 

reconstructed exactly from its samples taken uniformly at a rate fs > 2B samples per 

second. When fs= 2B then fs is the Nyquist rate. 
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Reconstructing the Signal from the Samples 
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x(nT)h(t nT) 
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x(nT)sinc(2 B(t nT) 
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Example 
 Determine the Nyquist sampling rate for the signal 

 x(t) = 3 + 2 cos(10 ) + sin(30 ). 

 
Solution 
 
The highest frequency is fmax = 30 /2  = 15 Hz 
 The Nyquist rate = 2 fmax = 2*15 = 30 sample/sec 
 



Aliasing 
 If a continuous time signal is sampled below the Nyquist rate then some of the high 

frequencies will appear as low frequencies and the original signal can not be 

 recovered from the samples. 
 

Frequency above Fs/2 will 
 appear (aliased) as frequency 

below Fs/2 

 

LPF 
 With cutoff 

 frequency 
 Fs/2 

 



Quantization & Binary Representation 
 x(t) 

 
n 
 L 2 

 

L : number of levels 

n : Number of bits 
 Quantization error = x/2 
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Example 
 A 5 minutes segment of music sampled at 44000 samples per second. The 

 amplitudes of the samples are quantized to 1024 levels. Determine the size of the 

segment in bits. 

 
Solution 
 
# of bits per sample = ln(1024) { remember L=2n } 

n = 10 bits per sample 

 # of bits = 5 * 60 * 44000 * 10 = 13200000 = 13.2 Mbit 
 



Discrete-Time Processing of 

Continuous-Time Signals 
 



Discrete Fourier Transform 
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Link between Continuous and Discrete 
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Laplace Transform 
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Fourier Transform 
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Discrete Fourier Transform 
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HILBERT TRANSFORM 
 

• Fourier, Laplace, and z-transforms change 
from the time-domain representation of a 
signal to the frequency-domain 
representation of the signal 
 • The resulting two signals are 
 equivalent representations of the 

same signal in terms of  time or 
frequency 
 • In contrast, The Hilbert transform does not 

involve a change of domain, unlike many 
other transforms 
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HILBERT TRANSFORM 
 

• Strictly speaking, the Hilbert transform is 
not a transform in this sense 
 - First, the result of a Hilbert transform is 

not equivalent to the original signal, 
rather it is a completely different signal 
 - Second, the Hilbert transform does not 
involve a domain change, i.e., the 
Hilbert transform of a signal x(t) is 
another signal denoted byx(t)in the 
same domain (i.e.,time domain) 
 

271 
 



HILBERT TRANSFORM 
 

• The Hilbert transform of a signal x(t) is a 

 signal 

 

x 

 

(t 

 

) 

 

whose frequency components 

 lag the frequency components of x(t) by 

 90  

 - 
 

x(t) 
 

has exactly the same frequency 
 

components present in x(t) with the same 
 amplitude-except there is a 90  phase delay 
 - The Hilbert transform of x(t) = Acos(2 f0t + ) 

is Acos(2 f0t +  - 90 ) = Asin(2 f0t + ) 
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HILBERT TRANSFORM 
 

• A delay of /2 at all frequencies 
 - ej2 f0t  will become 

 

j2 f 

 e 
 

t  

 
0 
 

 

 2 

 

j2 f 

 je 
  

 

t 
 

0 
 

j(2 f 
 - e-j2 f0t  will becomee 

 
t  
 

0 2 
 

) j2 f 
 je 

 

t 
 

0 
 

• At positive frequencies, the spectrum of the signal 

is multiplied by -j 

 • At negative frequencies, it is multiplied by +j 
 - This is equivalent to saying that the spectrum 

(Fourier transform) of the signal is multiplied 

 by 
 -jsgn(f). 
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HILBERT TRANSFORM 
 

• Assume that x(t) is real and has no DC component : X(f)|f=0 = 

 0, 

 then F x t)  
 

1 

 

jsgn(f)X(f) 

 1 
 F jsgn( 

 
1 
 

f)  

 t 
 1  x( ) 

 ˆ(t)  x(t) 
 

 d  
 

 

 
t 

 
 

 

t 

 

 

 

- The operation of the Hilbert transform is equivalent to a 

convolution, i.e., filtering 
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Example 
 • Determine the Hilbert transform of the signal x(t) = 

 2sinc(2t) 

 • Solution 
 • We use the frequency-domain approach . Using the scaling 

property of the Fourier transform, we have 

 
F x(t) 2  
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 1   
f f 
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• In this expression, the first term contains all the negative 

 frequencies and the second term contains all the positive 

 frequencies 

 • To obtain the frequency-domain representation of the Hilbert 

 transform of x(t), we use the relation 

which results in 

 

F x(t)  = -jsgn(f)F[x(t)], 

 
F x(t)  

 

 1   
j f j f 
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 2  
 • Taking the inverse Fourier transform, we have 
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HILBERT TRANSFORM 
 

• Obviously performing the Hilbert transform on a signal is 

 equivalent to a 90  phase shift in all its frequency 

 components 

 • Therefore, the only change that the Hilbert transform 

 performs on a signal is changing its phase 

 • The amplitude of the frequency components of the signal 
 do not change by performing the Hilbert-transform 

 x(t) 

 transform changes cosines into sines, the Hilbert 
 transform 
 

of a signal x(t) is orthogonal to x(t) 
 • Also, since the Hilbert transform introduces a 90  phase 

 shift, carrying it out twice causes a 180  phase shift, 

 which can cause a sign reversal of the original signal 

 



HILBERT TRANSFORM - ITS PROPERTIES 
 

• Evenness and Oddness 
 • The Hilbert transform of an even signal is odd, and 

 the Hilbert transform of an odd signal is even 
 - Proof 

 • If x(t) is even, then X(f) is a real and even function 
 • Therefore, -jsgn(f)X(f) is an imaginary and odd 
function 
 • Hence, its inverse Fourier transform x (t ) will be 

odd 
 • If x(t) is odd, then X(f) is imaginary and odd 
 • Thus -jsgn(f)X(f) is real and even 
 • Therefore, 

 

x 
 

(t 
 

) 
 

is even 
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HILBERT TRANSFORM - ITS PROPERTIES 
 

• Sign Reversal 
 • Applying the Hilbert-transform operation to a signal 

 twice causes a sign reversal of the signal, i.e., 
 x 
 

– Proof 
 

t) x(t) 
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F x 
 

[ 

 

(t)] 

 

 jsgn( 

 

f 
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X( 
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F[x 
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) 

 
• X( f ) does not contain any impulses at the origin 
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HILBERT TRANSFORM - ITS PROPERTIES 
 

• Energy 
 • The energy content of a signal is equal to the energy 

content of its Hilbert transform 
 - Proof 

 • Using Rayleigh's theorem of the Fourier transform, 
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 dt  
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 df 
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ˆ(t) dt  
  

 
jsgn( f)X( f) df  

 
 

 
X(f) df 
  

 
 

 
 

 
 

 
 

 
 

 
• Using the fact that |-jsgn(f)|2 = 1 except for f = 0, and 

the fact that X(f) does not contain any impulses at the 

origin completes the proof 
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HILBERT TRANSFORM - ITS PROPERTIES 
 

• Orthogonality 
 • The signal x(t) and its Hilbert transform are orthogonal 

 - Proof 
 • Using Parseval's theorem of the Fourier transform, we 

 obtain 
  

  
 

x(t)ˆ*(t)dt  

 

 

  
 

X(f)[ jsgn( f)X( f)]*df 
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0 
  

 

 
 

X(f) 
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 df j 
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2 
 df 0 
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• In the last step, we have used the fact that X(f) is 

Hermitian; | X(f)|2 is even 
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Sampling and reconstruction 
 



Continuous sampling 
 Signal 

 

Continuous D/A 
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Sampling: Time Domain 
 • Many signals originate as continuous- 

time signals, e.g. conventional music or 

 voice 
 • By sampling a continuous-time signal at 

 isolated, equally-spaced points in time, 
 we obtain a sequence of nusmbtrssampled 

 

sn s 
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Ts is the sampling period.  
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Sampling: Frequency Domain 
 

• Replicates spectrum of continuous-time signal 
 At offsets that are integer multiples of sampling frequency 

 
• Fourier series of impulse train where ws = 2  fs 
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• Example 
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Modulation by 
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Shannon Sampling Theorem 
 • A continuous-time signal x(t) with frequencies 

no higher than fmax can be reconstructed from 
its samples x[n] = x(n Ts) if the samples are 
taken at a rate fs which is greater than 2 fmax. 
 Nyquist rate = 2 fmax 

 Nyquist frequency =  fs/2. 
 • What happens if fs = 2fmax? 

 • Consider a sinusoid sin(2 fmax t) 
 Use a sampling period of Ts = 1/fs = 1/2fmax. 

 Sketch: sinusoid with zeros at t = 0, 1/2fmax, 1/fmax, … 
 



Shannon Sampling Theorem 
 

Assumption 
 • Continuous-time signal 

 has no frequency content 
above fmax 

 • Sampling time is exactly 
 the same between any two 

 samples 
 • Sequence of numbers 

 obtained by sampling is 
represented in exact 
precision 
 • Conversion of sequence to 

 continuous time is ideal 
 

In Practice 
 



Why 44.1 kHz for Audio CDs? 
 

• Sound is audible in 20 Hz to 20 kHz range: 
 fmax = 20 kHz and the Nyquist rate 2 fmax  = 40 kHz 

 • What is the extra 10% of the bandwidth used? 
 Rolloff from passband to stopband in the magnitude 

response of the anti-aliasing filter 
 • Okay, 44 kHz makes sense.  Why 44.1 kHz? 

 At the time the choice was made, only recorders 
 capable of storing such high rates were VCRs. 

 NTSC: 490 lines/frame, 3 samples/line, 30 frames/s = 
 44100 samples/s 

 PAL: 588 lines/frame, 3 samples/line, 25 frames/s = 
44100 samples/s 
 



Sampling 
 • As sampling rate increases, sampled waveform 

 looks more and more like the original 
 • Many applications (e.g. communication 

 systems) care more about frequency content in 
 the waveform and not its shape 
 • Zero crossings: frequency content of a sinusoid 

 Distance between two zero crossings: one half period. 
 With the sampling theorem satisfied, sampled sinusoid 
 crosses zero at the right times even though its 

waveform shape may be difficult to recognize 
 



Aliasing 
 

• Analog sinusoid 
 x(t) = A cos(2 f0t + ) 

 • Sample at Ts = 1/fs 

 x[n] = x(Ts n) = 

 A cos(2 f0 Ts n + ) 

 • Keeping the sampling 
 period same, sample 

 y(t) = A cos(2 (f0 + lfs)t + ) 

 where l is an integer 
 

y[n] = y(Ts n) 

 = A cos(2 (f0 + lfs)Tsn + ) 

= A cos(2 f0Tsn + 2 lfsTsn + ) 

= A cos(2 f0Tsn + 2 l n + ) 

= A cos(2 f0Tsn + ) 

 = x[n] 

 Here, fsTs = 1 
 
Since l is an integer, 

 cos(x + 2 l) = cos(x) 

 
• y[n] indistinguishable from 
 x[n] 

 
Frequencies f0 + l fs for l  0 are aliases of frequency f0 

 



The Sampling Theorem 
 

Impulse-Train Sampling 
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Sampling 
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Time domain: 
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Sampling Theorem: 
 
Let be a band-limited signal with 
 x t  

 then is uniquely determined by its samples 
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The reconstruction of the signal 
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Natural Sampling 
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Difficult: 
 1 ILPF is unpractical; 
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2 narrow, large-amplitude pulses are difficult to generate and transmit. 
 



Sampling with a Zero-Order Hold 
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Reconstruction 
 

Band-limited interpolation 
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Original CT Signal 
 

After sampling 
 

After passing LPF 
 

The LPF 
 smoothes out 

shape and fill in 
 the gaps 
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Sampling theory 
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Reconstruction theory 
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Sampling at the Nyquist rate 
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Sampling below the Nyquist rate 
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Reconstruction below the Nyquist rate 
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Reconstruction with a triangle function 
 

* 
 

= 
 

f(x) 
 

x 
 

= 
 

F(s) 
 



Reconstruction error 
 

Original Signal 
 

Triangle 
 Reconstruction 

 



Reconstruction with a rectangle function 
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Sampling a rectangle 
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Reconstructing a rectangle (jaggies) 
 

* 
 

= 
 

f(x) 
 

x 
 

= 
 

F(s) 
 



Sampling and reconstruction 
 

Aliasing is caused by 
 - Sampling below the Nyquist rate, 

 - Improper reconstruction, or 
 - Both 
 

We can distinguish between 
 - Aliasing of fundamentals (demo) 

 - Aliasing of harmonics (jaggies) 
 



Time-Domain System Analysis 

 



Impulse Response 
 Let a system be described by 

 
a2 y¢¢(t)+ a1 y¢(t ) + a0 y(t ) = x(t ) 

 and let the excitation be a unit impulse at time t = 0.  Then the 

zero-state response y is the impulse response h. 

 a2 h¢¢(t)+ a1h¢(t ) + a0 h(t ) = d (t ) 

 Since the impulse occurs at time t = 0 and nothing has excited 

the system before that time, the impulse response before time 

t = 0 is zero (because this is a causal system).  After time t = 0 

the impulse has occurred and gone away.  Therefore there is no 

longer an excitation and the impulse response is the homogeneous 

solution of the differential equation. 

 



Impulse Response 
 2 

 

h¢¢(t ) + a1h¢ 

 

(t ) + a0 h(t ) = d (t ) 
 

What happens at time, t = 0?  The equation must be satisfied at 

all times.  So the left side of the equation must be  a unit impulse. 

We already know that the left side is zero before time t = 0 

because the system has never been excited.  We know that the 

left side is zero after time t = 0 because it is the solution of the 

homogeneous equation whose right side is zero.  These two facts 

are both consistent with an impulse.  The impulse response might 

have in it an impulse or derivatives  of an impulse since all of 

these occur only at time, t = 0.  What the  impulse response does 

have in it depends on the form of the differential equation. 

 



Impulse Response 
 

Continuous-time LTI systems are described by differential 

equations of the general form, 

 ( ) 
 (t)+an-1y(n-1)(t)+ +a1 

 
( ) 
 

y¢(t ) + a0 y(t ) 
 

(t)+bm-1x(m-1)(t)+ +b1 

 
For all times,  t < 0: 

 

x¢ 
 

(t ) + b0 x(t ) 
 

If the excitation x (t ) is an impulse, then for all time t < 0 

it is zero.  The response y(t ) is zero before time t = 0 

because there has never been an excitation before that time. 

 



Impulse Response 
 For all time t > 0: 

 The excitation is zero.  The response is the homogeneous 

solution of the differential equation. 

 At time t = 0: 
 The excitation is an impulse.  In general it would be possible 

for the response to contain an impulse plus derivatives of an 

impulse because these all occur at time t = 0 and are zero 

before and after that time. Whether or not the response contains 

an impulse or derivatives of an impulse at time t = 0 depends 

on the form of the differential equation 

 ( ) 
 (t)+an-1y(n-1)(t)+ +a1 

 
( ) 
 

y¢(t ) + a0 y(t ) 
 

(t)+bm-1x(m-1)(t)+ +b1 

 
x¢(t ) + b0 x(t ) 
 



Impulse Response 
 ( ) 

 (t)+an-1y(n-1)(t)+ +a1 

 
( ) 
 

y¢(t ) + a0 y(t ) 
 

(t)+bm-1x(m-1)(t)+ +b1 

 
Case 1:  m < n 

 

x¢ 
 

(t ) + b0 x(t ) 
 

If the response contained an impulse at time t = 0 then 

the nth derivative of the response would contain the nth 

derivative of an impulse.  Since the excitation contains 

only the mth derivative of an impulse and m < n, the 

differential equation cannot be satisfied at time t = 0. 

Therefore the response cannot contain an impulse or any 

derivatives of an impulse. 

 



Impulse Response 
 ( ) 

 (t)+an-1y(n-1)(t)+ +a1 

 
( ) 
 

y¢(t ) + a0 y(t ) 
 

(t)+bm-1x(m-1)(t)+ +b1 

 
Case 2:  m = n 
 

x¢ 
 

(t ) + b0 x(t ) 
 

In this case the highest derivative of the excitation and 

 response are the same and the response could contain an 

 impulse at time t = 0 but no derivatives of an impulse. 

Case 3:  m > n 

 In this case, the response could contain an impulse at 

time t = 0 plus derivatives of an impulse up to the 

(m - n)th derivative. 

 Case 3 is rare in the analysis of practical systems. 
 



Impulse Response 
 

Example 

 Let a system be described by y¢(t ) + 3y(t ) = x(t ).  If the excitation 

x is an impulse we have h¢(t ) + 3h(t ) = d (t ).  We know that 

h(t ) = 0 for t < 0 and that h(t ) is the homogeneous solution for 

t > 0 which is h(t)=Ke-3t.  There are more derivatives of y than 

of x.  Therefore the impulse response cannot contain an impulse. 

So the impulse response is h(t ) = Ke-3t u(t ). 

 



Impulse Response 
 



Impulse Response 
 



Impulse Response 
 



Impulse Response 
 



Impulse Response 
 

Example  h(t ) = (-3 / 16)e-3t/4 u(t ) +(1 / 4)d (t ) 

 The original differential equation is 

Substituting the solution we get 

 d 

 

4h¢(t)+ 3h(t)= d¢(t). 

 

ü 

 
ì4 
 ï  í 
 

dt 

 

é(-3 / 16)e-3t/4 

ë 
 

u(t ) +(1 / 4)d (t )ù 
 ûï 
 

ý =d¢(t) 
 ï+3 

 î ë 
 

ù ï 
ûþ 
 

(1/4)d ¢(t )ùü 

 
ï4ë(-3/16)e-3t/4d (t)+ (9 / 64)e-3t/4 u(t)+ 

 
ûï 

 
í 

 
ý =d¢(t) 

 ï 

 

+3 
 

ë 
 

ù 
 
û ï 
 

-(3/ 4)e-3t/4d (t)+ (9 /16)e-3t/4 u(t)+d¢(t)- (9 /16)e-3t/4 u(t)+ (3/ 4)d (t)= d¢(t) 

d¢(t ) = d ¢(t )    Check. 

 



Signal Transmission Through a Linear System 
 

H(f): Transfer function/frequency response 
 

Signal transmission through a linear time-invariant system. 
 



Distortionless transmission: 
 a signal to pass without distortion 

 delayed ouput retains the  waveform 
 

Linear time invariant system frequency response for distortionless transmission. 
 



Determine the transfer function H(f), 
 

and td(f). 
 

What is the requirement on the bandwidth of 
 g(t) if amplitude variation within 2% and time 

delay variation within 5% are tolerable? 
 

(a) Simple RC filter. (b) Its frequency response and time delay. 
 



Ideal filters: allow distortionless transmission of a certain band of frequencies 

and suppress all the remaining frequencies. 
 

(a) Ideal low-pass filter frequency response and (b) its impulse response. 
 



Ideal high-pass and bandpass filter frequency responses. 
 

Paley-Wiener criterion 
 



For a physically realizable system h(t) must be causal 
 h(t)=0 
 

for t<0 
 

Approximate realization of an ideal low-pass filter by truncating its impulse response. 
 



Butterworth filter characteristics. 
 

The half-power bandwidth 
 •The bandwidth over which 

the amplitude response 

 remains constant within 3dB. 
 •cut-off frequency 
 



Digital Filters 
 

Sampling, quantizing, and coding 
 

Basic diagram of a digital filter in practical applications. 
 



Linear Distortion 
 

Magnitude distortion 
 Phase Distortion: Spreading/dispersion 
 

Pulse is dispersed when it passes through a system that is not distortionless. 
 



Distortion Caused by 

Channel Nonlinearities 
 

Signal distortion caused by nonlinear operation: (a) desired (input) signal spectrum; 
 (b) spectrum of the unwanted signal (distortion) in the received signal; (c) spectrum of the received si 

 (d) spectrum of the received signal after low-pass filtering. 
 



Multipath Effects 
 

Multipath transmission. 
 



Signal Energy: Parseval’s Theorem 
 

Energy Spectral Density 
 

Interpretation of the energy spectral density of a signal. 
 



Essential Bandwidth: the energy content of the components of frequeicies 

greater than B Hz is negligible. 
 

Figure Estimating the essential bandwidth of a signal. 
 



Find the essential bandwidth where it 
 contains at least 90% of the pulse energy. 
 



Energy of Modulated Signals 
 

Energy spectral densities of (a) modulating and (b) modulated signals. 
 



Determine the ESD of 
 

Autocorrelation Function 
 

Figure Computation of the time autocorrelation function. 
 



Signal Power 
 

Power Spectral Density 
 

Limiting process in derivation of PSD. 
 

Time Autocorrelation Function of Power 
 Signals 
 PSD of Modulated Signals 

 



Convolution 

Representation 
 



DT Unit-Impulse Response 
 

• Consider the DT SISO system: 
 

x[n] 
 

System 
 

y[n] 
 

• If the input signal is 

 

x[n]   [n] 

 

and the 
 system has no energy at 

 

n  
 

0, the 

 output 
 

y[n]  h[n] 

 

is called 
 the impulse response of the system 

 

[n] 

 
System 
 

h[n] 
 



Example 
 

• Consider the DT system described by 

 y[n]  ay[n 1]  bx[n] 

 • Its impulse response can be found to be 
 ( a) 

 h[n]  
 

n 

 b, n 0,1, 2,  
 

 
 

0, n 
 

1, 2, 3,  
 



Representing Signals in Terms of 
 Shifted and Scaled Impulses 
 

• Let x[n] be an arbitrary input signal to a 

DT LTI system 

 • Suppose that x[n]  0 forn  1, 2,  

 • This signal can be represented as 

 
x[n]  

 

x[0] [n]  

 

x[1] [n 1]  

 

x[2] [n 2]  

  

  

 

xi] [n i], 

 

n 

 

 

 

0,1, 2,  

 

 
 i 0 
 



Exploiting Time-Invariance 
 and Linearity 

 

 

 y[n]  
 

 
 i 0 
 

xi]h[n i], n 0 

 



The Convolution Sum 
 

• This particular summation is called the 
 convolution sum 

 
y[n]  
 

 
 

 
 0 

 

xi]h[n i] 

  
 x[n] h[n] 

 
• Equationy[n]  x[n] h[n] 

 

is called the 

 convolution representation of the system 

 • Remark: a DT LTI system is completely 

described by its impulse response h[n] 

 



Block Diagram Representation 
 of DT LTI Systems 

 • Since the impulse response h[n] provides 

the complete description of a DT LTI 

 system, we write 
 

x[n] y[n] 
 

h[n] 
 



The Convolution Sum 
 for Noncausal Signals 
 

and v[n] that are not zero for negative 

times (noncausal signals) 
 • Then, their convolution is expressed by 

 the two-sided series 
 

y[n]  
 

 

  
 i  

 

xi]v[n i] 
 



Example: Convolution of Two 
 Rectangular Pulses 

 • Suppose that both x[n] and v[n] are equal 

to the rectangular pulse p[n] (causal 

signal) depicted below 

 



The Folded Pulse 
 

• The signal v[ i]is equal to the pulse 

p[i] folded about the vertical axis 

 



Sliding 

 

v[n  i] 
 

over 
 

x[i] 
 



Sliding 

 

v[n  i] 
 

over 
 

xi] 
 

- Cont’d 
 



Plot of x[n]  v[n] 

 



Properties of the Convolution Sum 
 

• Associativity 
 x[n]  (v[n] w[n])  (x[ 

 

n  v 

 

n]) w[n] 

 
• Commutativity 
 

x[n]  v[n]  v[n]  x[n] 

 
• Distributivity w.r.t. addition 
 

x[n]  (v[n] w[n])  

 

x[ 

 

n  v 

 

n]  

 

x[n] w[n] 

 



Properties of the Convolution Sum - Cont’d 
 x 

 

[n] x[n q] 

 

 
 • Shift property: define 

 then 

 

 
  
  
  
 

q 
 

v[n] v[n q] 
 

q 
 

w[n] x[n  vn] 
 

w[n q] x 
 

[n] v[n] x[n] v[n] 
 

q 
 

q 
 • Convolution with the unit impulse 

 
x[n]  [n]  x[n] 

 
• Convolution with the shifted unit impulse 
 

x[n]  

 
q 
 

[n] x[n q] 

 



Example: Computing Convolution 

 with Matlab 
 

• Consider the DT LTI system 
 

x[n] 
 

h[n] 
 

y[n] 
 

• impulse response: 
 h[n] sin(0.5n), 

 

n  

 

0 

 • input signal: 
 x[n]  sin(0.2n),  n  0 

 



Example: Computing Convolution 

 with Matlab - Cont’d 
 

h[n] sin(0.5n), 

 

n  

 

0 

 

x[n]  sin(0.2n),  n  0 

 



Example: Computing Convolution 
 

• 
 

with Matlab - Cont’d 
 

• Matlab code: 

 n  0,1, ,40 

 
n=0:40; 
 
x=sin(0.2*n); 
 
h=sin(0.5*n); 
 
y=conv(x,h); 
 
stem(n,y(1:length(n))) 
 



Example: Computing Convolution 

 with Matlab - Cont’d 
 

y[n]  x[n] h[n] 

 



CT Unit-Impulse Response 
 

• Consider the CT SISO system: 
 

x(t) 
 

System 
 

y(t) 
 

• If the input signal isx(t)   (t) 

 t 0 
 

and the 
 

 
 system has no energy at 

 
, the 
 output 

 

y(t)  h(t) 

 

is called 
 the impulse response of the system 

 

 (t) 

 

System 
 

h(t) 
 



Exploiting Time-Invariance 
 

• Let x[n] be an arbitrary input signal with 
 x(t)  0,fort 0 

 • Using the sifting property of 
 may write 

 
 

 
x(t)  x( ) (t )d , 

 

 (t), we 

 

t 0 

 
 

 0  

 
• Exploiting time-invariance, it is 
 

 (t  ) 

 

System 
 

h(t  ) 
 



Exploiting Time-Invariance 
 



Exploiting Linearity 
 

• Exploiting linearity, it is 
  

 
y(t)  

 
 

  
 0 

 

x( )h(t )d , t 0 

 
• If the integrand 
 

x( )h(t ) 

 

does not 

 contain an impulse l 0ed at 
 

, the 

 lower limit of the integral can be taken to 

 be 0,i.e., 

 y(t)  

 

 

 
 

 0 
 

x( )h(t )d , t 0 

 



The Convolution Integral 
 

• This particular integration is called the 
 convolution integral 

 
 

 
y(t)  

 
 

 
x( )h(t )d , t 0 

  

 x(t)  h(t) 

 • Equationy(t)  x(t)  h(t) is called the 

convolution representation of the system 

 • Remark: a CT LTI  system is completely 

described by its impulse response h(t) 
 



Block Diagram Representation 
 

• S 
 

of CT LTI Systems 
 es 

 the complete description of a CT LTI 
 system, we write 
 

x(t) 
 

h(t) 
 

y(t) 
 



Example: Analytical Computation of 
 the Convolution Integral 
 • Suppose that 

 

where 
 p(t) is the rectangular pulse depicted in 

 x(t)  h(t)  p(t), 
 
figure 
 

p(t) 
 

0 T 
 

t 
 



Example - Cont’d 
 

• In order to compute the convolution 
 integral 

  
 

y(t)  

 
 

 0 
 

x( )h(t )d , t 0 

 

we have to consider four cases: 
 



Example - Cont’d 
 

• Case 1:t  

 

h(t  ) 

 

t T 

 

0 

 

x( ) 

 

t 0 T 

 

y(t)  0 

 

 

 



Example - Cont’d 
 

• Case 2:0  t  T 

 

h(t  ) 

 

x(  

 

) 

 

t T 0 t T 

 
t 

 y t) d   t 

 0 

 

 

 



Example - Cont’d 
 

• Case 3: 
 

0 t T T 
 

x( ) 

 

0 t T 

 

  T t  2T 

 

h(t  ) 

 

T t 

 
 

 
T 
 

y t)  

 
 

 t T 
 

d  T (t T) 2T t 

 



Example - Cont’d 
 

• Case 4: 
 

T t T  
 

x( ) 

 

0 T 

 

y(t)  0 

 

2T t 

 

h(t  ) 

 

 

 
t T t 
 



Example - Cont’d 
 

y(t)  x(t)  h(t) 

 

0 

 

T 

 

2T 

 

t 

 



Properties of the Convolution Integral 
 

• Associativity 
 

x(t)  (v(t)  w(t))  (x(t)  v(t))  w(t) 

 
• Commutativity 
 

x(t)  v(t)  v(t)  x(t) 

 
• Distributivity w.r.t. addition 
 

x(t)  (v(t)  w(t))  x(t)  v(t)  x(t)  w(t) 

 



Properties of the 
 Convolution Integral - Cont’d 

 
• Shift property: define 

 then 

 

 

  
  
  
  
 

x t) x(t q) 

 
q 
 

v t) v(t q) 
 

q 
 

w(t)  x(t)  v(t) 
 

w(t q) 
 

x t) 
 

q 
 

v t) x t) 
 

v t) 
 

q 
 

• Convolution with the unit impulse 
 

x(t)  (t)  x(t) 

 
• Convolution with the shifted unit impulse 
 

x t) 

 
  t) 

 
q 
 

xt q( ) 

 



Properties of the 
 Convolution Integral - Cont’d 

 
• Derivative property: if the signal x(t) is 

differentiable, then it is 

 d 
 dt 
 

x t) v t)  

 

dx t) 

 dt 

 

v t) 

 
• If both x(t) and v(t) are differentiable, 
 then it is also 

 d 
 

2 

 
2 

 

x t) v t) 

 

dx t) 
   

 

 

dv t) 

 dt 
 

dt 

 

dt 

 



Properties of the 

 Convolution Integral - Cont’d 

 

• Integration property: define 

  

 

t 
 ( 1) 

  
  
 

x  t)  
 

x( )d  
 
 

  
  

  ( 1) 

 

t 
 

v  t)  
 

  
 

then 
 

( 1) ( 1) 
 

 
  

 

v( )d  
 

( 1) 

 
(x v) 
 

(t)  x 

 

(t) v(t)  x(t) v 

 

(t) 

 



Representation of a CT LTI System 

in Terms of the Unit-Step Response 
 

• Let g(t) be the response of a system 
 with impulse response h(t) whenx(t)  u(t) 

 with no initial energy at timet  
 

0 
 

, i.e., 
 

u(t) 
 

h(t) 
 

g(t) 
 

• Therefore, it is 
 g(t)  h(t) u(t) 

 



Representation of a CT LTI System 

in Terms of the Unit-Step Response 
 - Cont’d 

 
• Differentiating both sides 
 dg t) 

 dt 

 

 

 

dh t) 

 dt 

 

u t) h t)  

 

du t) 

 dt 

 • Recalling that 
 du t) 

 dt 
 it is 

 

(t) and 

 

h(t)  h(t)  (t) 

 
t 

 dg t) 
 

dt 
 

h t) or 
 

g t) h( )d  
 

0 

 



1 
 2 

 

3 
 

4 
 

5 
 

Definitions of the components/Keywords: 
 

Convolution of two signals: 
 
Let x(t) and h(t) are two continuous signals to be convolved. 

The convolution of two signals is denoted by 

 which means 
 

where  is the variable of integration. 

 



1 
 2 

 

f(t) 
 

2 
 

Master Layout 
 

Signals taken to convolve 
 

g(t) 
 

2 1 
 

3 
 

--22 22 
 

t 
 

* 
 

* 
 

1 
 

t 
 

y(t) 
 

1 
 4 

 

Output of the 

convolution 
 

t 
 

-2 
 

0 
 

2 
 

3 
 

5 
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Step 1: 
 f(t) = 2 

 

2 
 

--22 22 
 

2 1 
 

t 
 

g(t)= -t+1 
 

1 
 

t 
 

3 
 
4 
 

5 
 

Instruction for the animator 
 

• The first point in DT has to appear 
 before the figures. 
 
• Then the blue figure has to appear. 
 
• After that the red figure has to appear. 
 
• After the figures, the next point in DT 
 has to appear. 
 

Text to be displayed in the working area (DT) 
 

• f(t) and g(t) are the two continuous signals to be convolved. 
 
• The convolution of the signals is denoted by 
 

which means 
 

where   is a dummy variable. 

 



1 
 

2 
 

Step 2: 
 

g(- ) 

 

-2 

 

2 

 
1 

 

-1 2 

 
Fig. a 
 

f( ) 

 

 

 

g(t- ) 

 2 
 

1 

 

-1 + t t -2 2 

 
Fig. b 
 

f( ) 

 

 

 

3 
 
4 
 

5 
 

Instruction for the animator 
 

• The figure in blue in fig. a has to 
 appear then its label should appear. 
 
• Then the red figure has to appear. 
 
• After that  the labeling of  red figure 
 has to appear. 
 
• In parallel to the fig. the text in DT has 
 to appear. 
 
• First two sentences in DT has to 
 appear with fig. a 
 
• The last sentence should appear with 
 fig. b. 
 

Text to be displayed in the working area (DT) 
 

• The  signal f( )  is shown 

 
• The reversed version of  g( )  i.e., g(-  is shown 

 
• The shifted version of g(- i.e., g(t- )  is shown 

 



1 
 

Step 3: 
 

Calculation of y(t) in five stages 
 

Stage  - I :  t < -2 
 g(t- ) 

 2 
 f( ) 

 

2 
 -1 + t t 

 

1 
 

-2 2 

 

 

 

3 
 4 
 

5 
 

Instruction for the animator 
 

• The figure in blue has to appear then 
 its label should appear. 
 
• Then the red figure has to appear. 
 
• After that  the labeling of  red figure 
 has to appear. 
 
• In parallel to the fig. the text in DT has 
 to appear. 
 
• After the figures, the 3, 4 lines in DT 
 should appear. 
 

Text to be displayed in the working area (DT) 
 

• The  signal f( )  is shown 

 
• The reversal and shifted version of  g(t)  i.e., g(t-  is shown 

 • Two functions do not overlap 
 
• Area under the product of the functions is zero 
 



1 
 

2 
 

Step 4: 
 Stage  - II :  -2 

 
≤  t < -1 
 

g(t- ) 

 

2 

 
1 

 

-1 + t -2 t 2 

 

f( ) 

 

 

 

3 
 4 
 

5 
 

Instruction for the animator 
 

• The figure in blue has to appear then 
 its label should appear. 
 
• Then the red figure has to appear. 
 
• After that  the labeling of  red figure 
 has to appear. 
 
• In parallel to the fig. the text in DT has 
 to appear. 
 
• After the figures, the 3, 4 lines in DT 
 should appear. 
 

Text to be displayed in the working area (DT) 
 

• The  signal f( )  is shown 

 
• The reversal and shifted version of  g(t)  i.e., g(t-  is shown 

 
• Part of g(t-  overlaps part of  f( ) 

 • Area under the product 
 



1 
 

2 
 

Step 5: 
 Stage  - III : 

 
-1 ≤  t < 2 
 

2 

 g(t- ) 
 

1 

 

-2 -1 + t   t 2 

 

f( ) 

 

 

 

3 
 4 
 

5 
 

Instruction for the animator 
 

• The figure in blue has to appear then 
 its label should appear. 
 
• Then the red figure has to appear. 
 
• After that  the labeling of  red figure 
 has to appear. 
 
• In parallel to the fig. the text in DT has 
 to appear. 
 
• After the figures, the 3, 4 lines in DT 
 should appear. 
 

Text to be displayed in the working area (DT) 
 

• The  signal f( )  is shown 

 
• The reversal and shifted version of  g(t)  i.e., g(t-  is shown 

 
•  g(t-  completely overlaps f( ) 

 • Area under the product 
 



1 
 

2 
 

Step 6: 
 Stage  - IV :  2  ≤  t < 3 

 
2 

 
1 

 

-2 -1 + t2 t 

 

f( ) 

 
g(t- ) 

 

 

 

3 
 4 
 

5 
 

Instruction for the animator 
 

• The figure in blue has to appear then 
 its label should appear. 
 
• Then the red figure has to appear. 
 
• After that  the labeling of  red figure 
 has to appear. 
 
• In parallel to the fig. the text in DT has 
 to appear. 
 
• After the figures, the 3, 4 lines in DT 
 should appear. 
 

Text to be displayed in the working area (DT) 
 

• The  signal f( )  is shown 

 
• The reversal and shifted version of  g(t)  i.e., g(t-  is shown 

 
• Part of g(t-  overlaps part of f( ) 

 • Area under the product 
 



1 
 

2 
 

Step 7: 
 Stage  - V :  t ≥ 3 

 
2 

 
1 

 

-2 2 -1 + t  t 

 

f( ) 

 g(t- ) 

 

 

 

3 
 4 
 

5 
 

Instruction for the animator 
 

• The figure in blue has to appear then 
 its label should appear. 
 
• Then the red figure has to appear. 
 
• After that  the labeling of  red figure 
 has to appear. 
 
• In parallel to the fig. the text in DT has 
 to appear. 
 
• After the figures, the 3, 4 lines in DT 
 should appear. 
 

Text to be displayed in the working area (DT) 
 

• The  signal f( )  is shown 

 
• The reversal and shifted version of  g(t)  i.e., g(t-  is shown 

 • Two functions do not overlap 
 
• Area under the product of the functions is zero 
 



1 
 

2 
 

Step 8: 
 

Output of Convolution 
 

y(t) 
 

1 
 

t 
 

-2 
 

0 
 

2 
 

3 
 

3 
 

Instruction for the animator 
 

• The figure in green has to appear then 
 its label should appear. 
 
• In parallel to the fig. the text in DT has 
 to appear. 
 
• After the figure, the equations in DT 
 should appear . 
 

Text to be displayed in the working area (DT) 
 

• The  signal y(t) is shown 
 

0 fort 2 

  2 

 4 
 y t) 

 

t 2t 
 

 
 

 f t)* g(t) 1 
 

2 

 

for 2 t 1 

for 1 t 2 

 
t 
  

 0 
 5 
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for  t 3 
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 +1 

 

-1 
 

f(t) 
 +1 
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+1 
 

+1 
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Correlation and Auto- 

Correlation of Signals 

 



Objectives 
 • Develop an intuitive understanding of the cross- 

 correlation of two signals. 
 • Define the meaning of the auto-correlation of a signal. 

 • Develop a method to calculate the cross-correlation 
 and auto-correlation of signals. 

 • Demonstrate the relationship between auto-correlation 
 and signal power. 

 • Demonstrate how to detect periodicities in noisy 
 signals using auto-correlation techniques. 

 • Demonstrate the application of cross-correlation to 
 sonar or radar ranging 

 



Correlation 
 

• Correlation addresses the question: “to what 
 degree is signal A similar to signal B.” 

 • An intuitive answer can be developed by 
 comparing deterministic signals with stochastic 

signals. 
 - Deterministic = a predictable signal equivalent to 
 that produced by a mathematical function 

 - Stochastic = an unpredictable signal equivalent to 
 that produced by a random process 

 



Three Signals 
 >> n=0:23; 

 >> A=[ones(1,4),zeros(1,8),ones(1,4),zeros(1,8)]; 
 >> subplot (3,1,1),stem(n,A);axis([0 25 0 1.5]);title('Signal A') 
 >> B1=randn(size(A)); %The signal B1 is Gaussian noise with the same length as A 

>> subplot(3,1,2),stem(n,B1);axis([0 25 -3 3]);title('Signal B1') 

 >> B2=A; 
 >> subplot(3,1,3),stem(n,B2); axis([0 25 0 1.5]);title('Signal B2');xlabel('Sample') 
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By inspection, A is “correlated” 

with B2, but B1 is 
 “uncorrelated” with both A and 
 B2.  This is an intuitive and 
 visual definition of “correlation.” 
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Quantitative Correlation 
 

• We seek a quantitative and algorithmic way of 

 assessing correlation 

 • A possibility is to multiple signals sample-by- 

 sample and average the results.  This would 

give a relatively large positive value for 

 identical signals and a near zero value for two 

 random signals. 
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Simple Cross-Correlation 
 

• Taking the previous signals, A, 
 B1(random), and B2 (identical to A): 

 

>> A*B1'/length(A) 
 ans = 
 -0.0047 

 >> A*B2'/length(A) 
 ans = 
 0.3333 

 

The small numerical 
 result with A and B1 
 suggests those signals 
 are uncorrelated while A 

and B2 are correlated. 
 



Simple Cross-Correlation of 
 Random Signals 

 >> n=0:100; 
 >> noise1=randn(size(n)); 
 >> noise2=randn(size(n)); 
 >> noise1*noise2'/length(noise1) 
 ans = 
 0.0893 

 

Are the two signals 
 correlated? 
 

With high probability, the result is expected to be 
 
≤ ±2/√N = ±0.1990 
 
for two random (uncorrelated) signals 
 
We would conclude these two signals are uncorrelated. 
 



The Flaw in Simple Cross- 

 Correlation 
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In this case, the simple cross-correlation would be zero 
 despite the fact the two signals are obviously “correlated.” 
 



Sample-Shifted Cross- 
 Correlation 

 •  Shift the signals k steps with respect to one another and calculate 

 r12(k). 

 •  All possible k shifts would produce a vector of values, the “full” 
 cross-correlation. 

 •  The process is performed in MATLAB by the command xcorr 
 •  xcorr is equivalent to conv (convolution) with one of the signals 

 taken in reverse order. 
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Full Cross-Correlation 
 >> A=[ones(1,4),zeros(1,8),ones(1,4),zeros(1,8)]; 

 >> A2=filter([0,0,0,0,0,1],1,A); 
 >> [acor,lags]=xcorr(A,A2); 
 >> subplot(3,1,1),stem(A); title('Original Signal A') 
 >> subplot(3,1,2),stem(A2); title('Sample Shifted Signal A2') 
 >> subplot(3,1,3),stem(lags,acor/length(A)),title('Full Cross-Correlation of A and A2') 
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Full Cross-Correlation of Two 
 Random Signals 

 >> N=1:100; 
 >> n1=randn(size(N)); 
 >> n2=randn(size(N)); 
 >> [acor,lags]=xcorr(n1,n2); 
 >> stem(lags,acor/length(n1)); 
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Auto-Correlation 
 • The cross-correlation of a signal with 

itself is called the auto-correlation 

 
r 
 
11 
 

1 

 (k)  
 N 

 

N 1 
 

 
 n 0 
 

x 
 

1[ 
 

n]x[n  k] 
 

1 
 

• The “zero-lag” auto-correlation is the 
 same as the mean-square signal power. 
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Auto-Correlation of a Random 
 Signal 

 >> n=0:50; 
 >> N=randn(size(n)); 

>> [rNN,k]=xcorr(N,N); 

 >> stem(k,rNN/length(N));title('Auto-correlation of a Random Signal') 
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Auto-Correlation of a Sinusoid 
 >> n=0:99; 

 >> omega=2*pi*100/1000; 
 >> d1000=sin(omega*n); 
 >> [acor_d1000,k]=xcorr(d1000,d1000); 

>> plot(k,acor_d1000/length(d1000)); 

>> title('Auto-correlation of signal d1000') 
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Identifying a Sinusoidal Signal 
 Masked by Noise 

 >> n=0:1999; 
 >> omega=2*pi*100/1000; 
 >> d=sin(omega*n); 
 >> d3n=d+3*randn(size(d));  % The sinusoid is contaminated with 3X noise 

>> d5n=d+5*randn(size(d));  % The sinusoid is contaminated with 5X noise. 

 >> subplot(3,1,1),plot(d(1:100)),title('Clean Signal') 
 >> subplot(3,1,2),plot(d3n(1:100)),title('3X Noisy Signal'), axis([0,100,-15,15]) 

>> subplot(3,1,3),plot(d5n(1:100)),title('5X Noisy Signal'), axis([0,100,-15,15]) 
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Identifying a Sinusoidal Signal 
 Masked by Noise (Normal Spectra) 

 >> n=0:1999; 
 >> omega=2*pi*100/1000; 
 >> d=sin(omega*n); 
 >> d3n=d+3*randn(size(d));  % The sinusoid is contaminated with 3X noise 

>> d5n=d+5*randn(size(d));  % The sinusoid is contaminated with 5X noise. 

>> subplot(2,1,1),fft_plot(d3n,1000);title('100 Hz 3X Noise') 

 >> subplot(2,1,2),fft_plot(d5n,1000);title('100 Hz 5X Noise') 
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Identifying a Sinusoidal Signal Masked by 
 Noise ( Auto-correlation Spectra) 

 >> acor3n=xcorr(d3n,d3n); 
 >> acor5n=xcorr(d5n,d5n); 
 >> subplot(2,1,1),fft_plot(d3n,1000);title('100 Hz, 3X Noise, Signal Spectrum') 
 >> subplot(2,1,2),fft_plot(acor3n,1000);title('100 Hz, 3X Noise, Auto-correlation Spectrum') 

>> figure, subplot(2,1,1),fft_plot(d5n,1000);title('100 Hz, 5X Noise, Signal Spectrum') 

>> subplot(2,1,2),fft_plot(acor5n,1000);title('100 Hz, 5X Noise, Auto-correlation Spectrum') 
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Detecting Periodicities in Noisy 
 Data: Annual Sunspot Data 

 >> load wolfer_numbers 

 >> year=sunspots(:,1); 

>> spots=sunspots(:,2); 

 >> stem(year,spots);title('Wolfer Sunspot Numbers');xlabel('Year') 
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Detecting Periodicities in Noisy 
 Data: Annual Sunspot Data 

 >> [acor,lag]=xcorr(spots); 
 >> stem(lag,acor/length(spots)); 
 >> title('Full Auto-correlation of Wolfer Sunspot Numbers') 
 >> xlabel('Lag, in years') 
 >> figure, stem(lag(100:120),acor(100:120)/length(spots)); 
 >> title('Auto-correlation from 0 to 20 years') 
 >> xlabel('Years') 
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Sonar and Radar Ranging 
 >> x=[ones(1,100),zeros(1,924)]; 

 >> n=0:1023; 
 >> plot(n,x); axis([0 1023 -.2, 1.2]) 
 >> title('Transmitted Pulse');xlabel('Sample,n') 
 >> h=[zeros(1,399),1]; % Impulse response for z-400 delay 
 >> x_return=filter(h,1,x); % Put signal thru delay filter 
 >> figure,plot(n,x_return); axis([0 1023 -.2, 1.2]) 

>> title('Pulse Return Signal');xlabel('Sample, n') 
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Sonar and Radar Ranging 
 >> [xcor_pure,lags]=xcorr(x_return,x); 

 >> plot(lags,xcor_pure/length(x)) 
 >> title('Cross-correlation, transmitted and received pure signals') 

>> xlabel('lag, samples') 
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Sonar and Radar Ranging 
 >> x_ret_n=x_return+1.5*randn(size(x_return)); 

 >> plot(n,x_ret_n); axis([0 1023 -6, 6]) 
 

%Note change in axis range 
 >> title('Return signal contaminated with noise') 

>> xlabel('Sample,n') 
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Sonar and Radar Ranging 
 >> [xcor,lags]=xcorr(x_ret_n,x); 

 >> plot(lags,xcor/length(x)) 
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Summary 
 • Cross-correlation allows assessment of 

the degree of similarity between two 

 signals. 
 - Its application to identifying a sonar/radar 
 return echo in heavy noise was illustrated. 

 • Auto-correlation (the correlation of a 

signal with itself) helps identify signal 

features buried in noise. 

 



The Laplace Transform 

 



Generalizing the Fourier Transform 
 



Generalizing the Fourier Transform 
 



Generalizing the Fourier Transform 
 e extra factor e-st  is sometimes called a convergence factor 

because, when chosen properly, it makes the integral converge 

for some signals for which it would not otherwise converge. 

For example, strictly speaking, the signal A u(t ) does not have 

a CTFT because the integral does not converge.  But if it is 

multiplied by the convergence factor, and the real part of s 

is chosen appropriately, the CTFT integral will converge. 
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Complex Exponential Excitation 
 



Complex Exponential Excitation 
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The Transfer Function 
 e x(t) be the excitation and let y(t) be the response of a 

 
system with impulse response h(t ).  The Laplace transform of 

y(t) is 
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The Transfer Function 
 Let x(t )= u(t ) and let h(t )= e-4t u(t ).  Find y(t ). 
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Cascade-Connected Systems 
 

If two systems are cascade connected the transfer function of 

the overall system is the product of the transfer functions of the 

two individual systems. 

 



Direct Form II Realization 
 



Direct Form II Realization 
 



Direct Form II Realization 
 



Direct Form II Realization 
 



Direct Form II Realization 
 



Direct Form II Realization 
 

A system is defined by y¢¢(t ) + 3y¢(t ) + 7 y(t ) = x¢(t ) - 5 x(t ). 
 

H(s)= 

 

s-5 

s2 + 3s + 7 

 



Inverse Laplace Transform 
 

There is an inversion integral 
 

y(t)= 

 

1 
 j2p 

 

s+j¥ 
 

ò 

 s-j¥ 
 

Y(s)estds ,  s = s + jw 

 

for finding y(t ) from Y(s),  but it is rarely used in practice. 

 
Usually inverse Laplace transforms are found by using tables 
 of standard functions and the properties of the Laplace transform. 
 



Existence of the  Laplace 

 Transform 

 Time Limited Signals 
 

If x(t )= 0 for t < t0  and t > t1  it is a time limited signal.  If 

x(t) is also bounded for all t, the Laplace transform integral 

converges and the Laplace transform exists for all s. 

 



Existence of the  Laplace 

 Transform 

 

Let x(t )= rect(t)= u(t + 1 / 2)- u(t - 1 / 2). 
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Existence of the  Laplace 

 Transform 

 Right- and Left-Sided Signals 
 

Right-Sided 
 

Left-Sided 
 



Existence of the  Laplace 
 Transform 

 Right- and Left-Sided Exponentials 
 

Right-Sided 
 

Left-Sided 
 

x(t ) = eat u(t - t0 ) 

 

,  a Î  
 

x(t ) = ebt u(t0 - t ) 
 

,  b Î  
 



Existence of the  Laplace 

 Transform 

 Right-Sided Exponential 
 

x(t ) = eat u(t - t0 ) 
 

,  a Î  
 ¥ 
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If Re(s) = s > a  the asymptotic 

 ( 
 )te-jwt  as t ® ¥ 

 
is to approach zero and the Laplace 

transform integral converges. 

 



Existence of the  Laplace 

 Transform 

 Left-Sided Exponential 
 

x(t ) = ebt u(t0 - t ) 
 

,  b Î  
 t0 
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X(s)= òebte-stdt = ò e(b-s)te-jwtdt 

 -¥ 
 

-¥ 
 

If s < b  the asymptotic behavior of 

e(b-s)t e-jwt  as t ® -¥ is to approach 

zero and the Laplace transform 

integral converges. 

 



Existence of the  Laplace 

 Transform 

 The two conditions s > a  and s < b  define the region of 

convergence (ROC) for the Laplace transform of right- and 

left-sided signals. 

 



Existence of the  Laplace 

 Transform 

 Any right-sided signal that grows no faster than an exponential 

in positive time and any left-sided signal that grows no faster 

than an exponential in negative time has a Laplace transform. 

If x(t ) = xr (t ) + xl (t ) where xr (t ) is the right-sided part and 

xl (t) is the left-sided part and ifxr (t)< Kreat  andxl (t)<Klebt 

and a  and b  are as small as possible, then the Laplace-transform 

integral converges and the Laplace transform exists for a < s < b. 

Therefore if a < b  the ROC is the region a < b.  If a > b, there is 

no ROC and the Laplace transform does not exist. 

 



Laplace Transform Pairs 
 

The Laplace transform of g1 (t ) = Aeat u(t ) is 

 ¥ ¥ 
 

G1 (s)= ò Aeat u(t)e-stdt = Aòe-(s-a)tdt 
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This function has a pole at s = a  and the ROC is the region to the 
 
right of that point.  The Laplace transform of g2 
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(t)= Aebt u(-t) is 
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 This function has a pole at s = b  and the ROC is the region to the 

left of that point. 

 



Region of Convergence 
 



Region of Convergence 
 

Some of the most common Laplace transform pairs 
 (There is more extensive table in the book.) 

 



Laplace Transform Example 
 



Laplace Transform Example 
 

Find the inverse Laplace transform of 
 

X(s)= 

 

4 
 s+3 

 4 
 

- 
 

10 
 s-6 

 

,-3<s<6 
 

The ROC tells us that 
 s+3 

 

must inverse transform into a 

10 

 right-sided signal and that 

a left-sided signal. 

 

s-6 
 

must inverse transform into 
 

x(t ) = 4e-3t u(t ) + 10e6t u(-t ) 
 



Laplace Transform Example 
 

Find the inverse Laplace transform of 
 

X(s)= 

 

4 
 s+3 

 

- 
 

10 
 s-6 

 

, s > 6 
 

The ROC tells us that both terms must inverse transform into a 

right-sided signal. 

 x(t ) = 4e-3t u(t ) - 10e6t u(t ) 
 



Laplace Transform Example 
 

Find the inverse Laplace transform of 
 

X(s)= 

 

4 
 s+3 

 

- 
 

10 
 s-6 

 

, s < -3 
 

The ROC tells us that both terms must inverse transform into a 

left-sided signal. 

 x(t ) = -4e-3t u(-t ) + 10e6t u(-t ) 
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Partial-Fraction Expansion 
 



Partial-Fraction Expansion 
 



Partial-Fraction Expansion 
 



Partial-Fraction Expansion 
 10s 
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Partial-Fraction Expansion 
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Partial-Fraction Expansion 
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Partial-Fraction Expansion 
 

H(s)= 

 

10s 
 

2 
 ,  s > -4 ¬ Improper in s 

 (s + 4)(s + 9) 
 

H(s)= 

 

10s 
 

2 
 ,  s > -4 

 s2 +13s + 36 

 10 

 Synthetic Division ® s2 + 13s + 36 10s2 

 
10s2 + 130s + 360 

 - 130s - 360 

 
H(s)=10 - 

 

130s + 360 é-32 

(s + 4)(s + 9)=10-ês+4 

 

+ 

 

162ù 

s+9ú 

 

,  s > -4 

 

h(t ) = 10d (t ) - 

 

é162e-9t - 32e-4tùu(t ) 

 
ë 
 

û 

 



Inverse Laplace Transform 

 Example 

 Method 1 
 

G(s)= 

 

G(s)= 

 

s 
 (s - 3)(s2 - 4s + 5) 

 s 

 

,  s < 2 
 

,  s < 2 
 

(s - 3)(s - 2 + j)(s - 2 - j) 
 

G(s)= 

 
æ 

 

3/2 

 s-3 

 
3 

 

-(3+j)/4 

 s-2+ j 
 
3+ j 
 

-(3-j)/4,  s < 2 

 s-2- j 
 

3- j ö 

 g(t ) = 
 ç 

 

- 
 2 

 

e3t + 
 4 

 

e(2-j)t + 
 4 

 

e(2+j)t 

 ÷u(-t) 
 



Inverse Laplace Transform 

 Example 

 
g(t ) = 

 

æ 

 ç 

 

- 

 

3 

 2 

 

e3t + 

 

3+ j 

 4 

 

e(2-j)t + 
 

3- j 
 4 

 

e(2+j)t 

 

ö 

 ÷u(-t) 
 This looks like a function of time that is complex-valued.  But, 

with the use of some trigonometric identities it can be put into 

the form 

 g(t ) = (3 / 2){e2t ëcos(t ) +(1 / 3)sin(t )û - e3t }u(-t ) 

which has only real values. 

 



Inverse Laplace Transform 

 Example 

 
Method 2 
 

G(s)= 

 

G(s)= 

 

s 
 

(s - 3)(s2 - 4s + 5) 
 s 

 

,  s < 2 
 

,  s < 2 
 

(s - 3)(s - 2 + j)(s - 2 - j) 
 

G(s)= 

 

3/2 
 s-3 
 

-(3+j)/4 

 s-2+ j 
 

-(3-j)/4,  s < 2 

 s-2- j 
 

Getting a common denominator and simplifying 
 

G(s)= 

 

3/2 

 s-3 

 

- 

 

1 6s -10 

4s2 -4s+5 

 

= 

 

3/2 

 s-3 

 

- 

 

6 s-5/3 

4(s - 2)2 +1 

 

,  s < 2 

 



Inverse Laplace Transform 
 Example 

 M ethod 2 
 

G(s)= 

 

3/2 
 s-3 
 

- 
 

6 s-5/3 

4(s - 2)2 +1 

 

,  s < 2 
 

The denominator of the second term has the form of the Laplace 

transform of a damped cosine or damped sine but the numerator 

is not yet in the correct form.  But by adding and subtracting the 

correct expression from that term and factoring we can put it into 

the form 

 
G(s)= 

 

3/2 

 
- 
 

3é s-2 1/3 

 ê 
 

ù 

 ú,  s < 2 

 s-3 2 
 ë 

 
(s - 2)2 +1+(s - 2)2 +1 

 
û 
 



Inverse Laplace Transform 

 Example 

 
M ethod 2 
 

G(s)= 

 

3/2 

 
- 
 

3é s-2 1/3 

 ê 
 

ù 

 ú,  s < 2 

 s-3 2 
 ë 

 
(s - 2)2 +1+(s - 2)2 +1 

 
û 
 

This can now be directly inverse Laplace transformed into 

 g(t ) = (3 / 2){e2t ëcos(t ) +(1 / 3)sin(t )û - e3t }u(-t ) 

which is the same as the previous result. 

 



Inverse Laplace Transform 

 Example 

 M ethod 3 
 

When we have a pair of poles p2  and p3  that are complex conjugates 
 

we can convert the form G(s) = 

 

A 
 s-3 

 

+  K2 +  K3 into the 
 s-p2 s-p3 

 

form G(s) = 

 

A 
 s-3 

 

+s 
 

(K2 + K3)-K3p2 -K2p3 

 s2 - (p1 + p2 )s + p1 p2 

 

=  A + 
 s-3 
 

Bs + C 

s2 - (p1 + p2 )s + p1 p2 

 In this example we can find the constants A,  B and C  by realizing that 
 

G(s)= 

 

s 

(s - 3)(s2 - 4s + 5) 

 

+  Bs+C ,  s < 2 
 s-3 s2 - 4s + 5 

 
is not just an equation, it is an identity.  That means it must be an 

equality for any value of s. 

 



Inverse Laplace Transform 
 Example 

 M ethod 3 
 

A can be found as before to be 3/ 2.  Letting s = 0, the 
 

identity becomes 0 º -3/2 
 

+C  and C = 5 / 2.  Then, letting 
 

3 
 

5 
 s =1, and solving we get B = -3/2.  Now 

 

G(s)= 

 
or 
 

3/2 
 s-3 
 

3/2 
 

+(-3/2)s+5/2 ,  s < 2 

 s2 - 4s + 5 
 

3 s-5/3 
 G(s)= 

 s-3 
 

- 
 2s2 -4s+5 

 

,  s < 2 
 

This is the same as a result in Method 2 and the rest of the solution 

is also the same.  The advantage of this method is that all the 

numbers are real. 

 



Use of MATLAB in Partial 

 Fraction Expansion 

 



Laplace Transform Properties 
 



Laplace Transform Properties 
 



Laplace Transform Properties 
 



Laplace Transform Properties 
 



Laplace Transform Properties 
 

Final Value Theorem 
 

The final value theorem applies to a function G (s) if all the 

poles of sG(s) lie in the open left half of the s plane.  Be sure 

to notice that this does not say that all the poles of G (s) must 

lie in the open left half of the s plane.  G (s) could have a single 

pole at s = 0 and the final value theorem would still apply. 

 



Use of Laplace Transform 

 Properties 

 



Use of Laplace Transform 

 Properties 

 



The Unilateral Laplace 

 Transform 

 In most practical signal and system analysis using the Laplace 
 transform a modified form of the transform, called the unilateral 

Laplace transform, is used.  The unilateral Laplace transform is 

 ¥ 
 defined by G(s) = ò g(t )e-st dt.  The only difference between 

 0- 

 
this version and the previous definition is the change of the lower 

integration limit from - ¥ to 0-.  With this definition, all the 

Laplace transforms of causal functions are the same as before 

with the same ROC, the region of the s plane to the right of all 

the finite poles. 

 



The Unilateral Laplace 

 Transform 

 The unilateral Laplace transform integral excludes negative time. 

If a function has non-zero behavior in negative time its unilateral 

and bilateral transforms will be different.  Also functions with the 

same positive time behavior but different negative time behavior 

will have the same unilateral Laplace transform.  Therefore, to avoid 

ambiguity and confusion, the unilateral Laplace transform should 

only be used in analysis of causal signals and systems.  This is a 

limitation but in most practical analysis this limitation is not significant 

and the unilateral Laplace transform actually has advantages. 

 



The Unilateral Laplace 

 Transform 

 
The main advantage of the unilateral Laplace transform is that 

the ROC is simpler than for the bilateral Laplace transform and, 

in most practical analysis, involved consideration of the ROC is 

unnecessary.  The inverse Laplace transform is unchanged.  It is 

 
g(t ) = 

 

1 
 

s+j¥ 
 

ò 

 
G(s)e+stds 

 j2ps-j¥ 

 



The Unilateral Laplace 

 Transform 

 



The Unilateral Laplace 

 Transform 

 
The time shifting property applies only for shifts to the right because 
 a shift to the left could cause a signal to become non-causal.  For the 
 same reason scaling in time must only be done with positive scaling 
 coefficients so that time is not reversed producing an anti-causal function. 

The derivative property must now take into account the initial value 

of the function at time t = 0-  and the integral property applies only to 

functional behavior after time t = 0.  Since the unilateral and bilateral 

Laplace transforms are the same for causal functions, the bilateral table 

of transform pairs can be used for causal functions. 

 



The Unilateral Laplace 

 Transform 

 The Laplace transform was developed for the solution of differential 

equations and the unilateral form is especially well suited for solving 

differential equations with initial conditions.  For example, 

 d 
 

2 
 

ëx(t)û + 7 

 

d 

 ëx(t)û +12x(t)= 0 
 dt2 dt 

with initial conditions x(0- ) = 2 

 

d 

 and 
 

(x(t )) = -4. 
 dt 

 
t=0- 

 

Laplace transforming both sides of the equation, using the new 

derivative property for unilateral Laplace transforms, 

 
s2 X(s)- sx(0- )- 
 

d 
 (x(t )) +7 

 
ù 12 X(s) = 0 

 dt 
 

t=0- ë 
 

û+ 
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Pole-Zero Diagrams and 

Frequency Response 

 limH(jw)= lim3 

 w®0- w®0- 

 

jw 

 jw + 3 

 

=0 lim 

 w®0+ 

 

H(jw)= lim3 

 
w®0+ 

 

jw 

 jw + 3 

 

=0 

 

lim H(jw)= lim3 

 
w®-¥ w®-¥ 
 

jw 

 jw + 3 

 

=3 lim 

 
w®+¥ 
 

H(jw)= lim3 

 
w®+¥ 
 

jw 

 jw + 3 

 

=3 

 



Pole-Zero Diagrams and 

Frequency Response 

 
lim  H(jw)= - 

 w®0- 

 

p 

 
-0=-p 
 2 2 

 

lim  H(jw)=p-0=p 

 w®0+ 2 2 
 

lim  H(jw)= -p 

 

æ 

 
- 
 

-p 

 

ö 

 
lim  H(jw)= 
 

p 

 -p = 0 
 w®-¥ 

 

2 

 

ç 

 

2÷=0 

 

w®+¥ 
 

2 
 

2 
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Pole-Zero Diagrams and 

Frequency Response 

 



The z Transform 

 



Generalizing the DTFT 
 ¥ 

 The forward DTFT is defined by X(ejW )= å x[n]e-jWn in which 

 n=-¥ 
 

W is discrete-time radian frequency, a real variable.  The quantity ejWn 

is then a complex sinusoid whose magnitude is always one and whose 

phase can range over all angles.  It always lies on the unit circle in 

the complex plane.  If we now replace ejW  with a variable z that can 

 ¥ 
 have any complex value we define the z transform X(z) = å x[n]z-n 

 n=-¥ 
 

The DTFT expresses signals as linear combinations of complex 
 sinusoids.  The z transform expresses signals as linear combinations of 

complex exponentials. 

 



Complex Exponential Excitation 
 



The Transfer Function 
 



Systems Described by 

Difference Equations 

 



Direct Form II Realization 
 

Direct Form II realization of a discrete-time system is similar 
 in form to Direct Form II realization of continuous-time systems 
 

A continuous-time system can be realized with integrators, 
 summing junctions and multipliers 
 
A discrete-time system can be realized with delays, summing 

junctions and multipliers 

 



Direct Form II Realization 
 



The Inverse z Transform 
 



Existence of the z Transform 
 Time Limited Signals 

 

If a discrete-time signal x[n] 

is time limited and bounded, 

the z transformation 

 ¥ 
 summation 

 

å 
 

x[n]z-n 

 

is 
 n=-¥ 

 
finite and the z transform of 

x[n] exists for any non-zero 

value of z. 

 



Existence of the z Transform 
 Right- and Left-Sided Signals 

 

A right-sided signal xr [n] is one for which xr [n] = 0 for any 

n < n0 and a left-sided signal xl [n] is one for which xl [n]= 0 

for any n > n0 . 

 



Existence of the z Transform 
 Right- and Left-Sided Exponentials 

 

x[n]=an u[n - n0]  ,  a Î  

 

x[n]= bn u[n0 - n]  ,  b Î  

 



Existence of the z Transform 
 

The z transform of x[n] = an u[n - n0 ]  ,  a Î   is 

 ¥ ¥ 
 X(z)=åan u[n - n0 ]z-n=å(az-1 

 n=-¥ n=n0 

 
if the series converges and it converges 

ifz>a.  The path of integration of 

the inverse z transform must lie in the 

region of the z plane outside a circle of 

radiusa 

 

n 
 ) 

 



Existence of the z Transform 
 

The z transform of x[n] = bn u[n0 - n]  ,  b Î   is 

 n0 n0 

 X(z)=åbnz-n=å(bz-1 

 n=-¥ n=-¥ 
 

n 
 )= 

 

¥ 
 å(b-1z 

 n=-n0 

 

n 
 ) 

 
if the series converges and it converges if 

 

z 

 

< 

 

b 

 

.  The path 

 
of integration of the inverse z transform 

 must lie in the region of the z plane inside 

 a circle of radius 

 

b 

 



Existence of the z Transform 
 



Some Common z Transform 

 Pairs 

 



z-Transform Properties 
 



z-Transform Properties 
 



z-Transform Properties 
 



z-Transform Properties 
 

For the final-value theorem to apply to a function G(z) all the 

finite poles of the function (z - 1)G(z) must lie in the open 

interior of the unit circle of the z plane.  Notice this does not 

say that all the poles of G (z) must lie in the open interior of 

the unit circle.  G (z) could have a single pole at z = 1 and the 

final-value theorem could still apply. 

 



The Inverse z Transform 
 Synthetic Division 

 

For rational z transforms of the form 
 

H(z)= 

 

bM zM  +bM -1zM-1 + +b1z+b0 

 a 
 

NzN +aN-1zN-1 + +a1z+a0 

 we can always find the inverse z transform by synthetic 

division.  For example, 

 
H(z)= (z-1.2)(z+0.7)(z+0.4) 
 (z - 0.2)(z - 0.8)(z + 0.5) 
 

z3 - 0.1z2 -1.04z - 0.336 

 

, z> 0.8 
 

H(z)= 
 z3 - 0.5z2 - 0.34z + 0.08 

 

, z> 0.8 
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 Synthetic Division 

 



The Inverse z Transform 
 Synthetic Division 

 



The Inverse z Transform 
 Synthetic Division 

 

We can always find the inverse z transform of a rational 
 function with synthetic division but the result is not in closed 

form.  In most practical cases a closed-form solution is 

preferred. 

 



Partial Fraction Expansion 
 



Partial Fraction Expansion 
 



z-Transform Properties 
 

An LTI system has a transfer function 
 

H(z)= 

 

Y(z) -1/2 

X(z) z2 z-z+2/9 

 

, z>2/3 
 

Using the time-shifting property of the z transform draw a 

block diagram realization of the system. 

 Y(z)(z2 - z + 2 / 9)= X(z)(z -1/ 2) 
 

z2 Y(z)= z X(z)-(1/ 2)X(z)+ zY(z)- (2 / 9)Y(z) 
 Y(z)= z-1 X(z)-(1/ 2)z-2 X(z)+ z-1Y(z)- (2 / 9)z-2 Y(z) 

 



z-Transform Properties 
 Y(z)= z-1 X(z)-(1/ 2)z-2 X(z)+ z-1 Y(z)- (2 / 9)z-2 Y(z) 

Using the time-shifting property 

 y[n]= x[n -1]-(1/ 2)x[n - 2]+ y[n -1]- (2 / 9)y[n - 2] 
 



z-Transform Properties 
 



z-Transform Properties 
 

G(ze-jp/8 ) has poles at z = 0.8e-jp/8  and 0.8e+j3p/8  and a zero 

at z = ejp/8 .  All the finite zero and pole locations have been 

rotated in the z plane by p /8 radians. 

 



z-Transform Properties 
 



Inverse z Transform Example 
 



Inverse z Transform Example 
 



Inverse z Transform Example 
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The Unilateral z Transform 
 

Just as it was convenient to define a unilateral Laplace transform it is 

convenient for analogous reasons to define a unilateral z transform 

 ¥ 
 X(z)=åx[n]z-n 

 n=0 
 



Properties of the Unilateral z 

 Transform 

 



Solving Difference Equations 
 

The unilateral z transform is well suited to solving difference 

equations with initial conditions.  For example, 

 
y[n+2]- 
 

3 
 2 
 

y[n+1]+ 

 

1 
 2 
 

y[n]=(1/ 4)n , for n ³ 0 

 
y[0]=10 

z transforming both sides, 

 

and  y[1] = 4 

 

3 

 
1 z 

 z2 

 
éY(z)- y[0]- z-1y[1]ù- 
ë û 
 

z 
 2 

 
ë 
 

û+ Y(z)= 
 2 z-1/4 

 
the initial conditions are called for systematically. 
 



Solving Difference Equations 
 

Applying initial conditions and solving, 

 
Y(z)= z 

 
and 

 

æ 16 / 3 

 çz-1/4 

 

n 
 

+ 

 

4 

 z-1/2 

 

+ 

 

2/3ö 

 z-1÷ 

 

y[n]= 

 

é16æ1ö 
ê 
 

+4 

 

æ1ön 

 + 
 

2ù 
 úu[n] 

 ë 
 

3ç4÷ ç2÷ 3 

 
û 
 

This solution satisfies the difference equation and the initial 

conditions. 

 



Pole-Zero Diagrams and 
 Frequency Response 

 For a stable system, the response to a sinusoid applied at 
 time t = 0 approaches the response to a true sinusoid (applied 

for all time). 

 



Pole-Zero Diagrams and 

Frequency Response 

 Let the transfer function of a system be 
 
H(z)= 

 

z 

z2 - z / 2 + 5 /16 

 

= 

 

z 

 (z-p1)(z-p2) 
 p1 =1+j2 

 

,  p2 =1-j2 
 4 

 

H(ejW)= 

 

4 
 

ejW 

 
ejW - p1 ejW - p2 

 



Pole-Zero Diagrams and 

Frequency Response 

 



Transform Method Comparison 
 

A system with transfer function H(z) = 

 

z 

(z - 0.3)(z + 0.8) , 

 

z> 0.8 
 

is excited by a unit sequence.  Find the total response. 

Using z-transform methods, 

 
Y(z)= H(z)X(z)= 

 
2 
 

z 

(z - 0.3)(z + 0.8)´z-1 

 

, z>1 
 

Y(z)= 
 

z .1169 
 

z-0.3 
 

+ 
 

0.3232 
 
z+0.8 
 

+ 
 

0.7937 
 

z-1 
 

, z>1 
 

y[n]= 

 

é-0.1169 

 
ë 
 

(0.3)n-1 + 0.3232 (-0.8)n-1 + 0.7937ù [n-1] 
 

ûu 
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Transform Method Comparison 
 

Y(ejW)= 

 

-0.1169e-jW 

 1-0.3e-jW 

 

+ 

 

0.3232e-jW 

1+0.8e-jW 

 

+ 0.7937 

 

æ e-jW 

ç1-e-jW 

 

ö 

 + pd2p (W) 
 ÷ 
 

Finding the inverse DTFT, 

 
y[n]= 

 

é-0.1169 

 
ë 
 

(0.3)n-1 + 0.3232 (-0.8)n-1 + 0.7937ù [n-1] 
 

ûu 
 

The result is the same as the result using the z transform, but the effort 

and the probability of error are considerably greater. 

 



System Response to a Sinusoid 
 A s  tem with transfer function 

 
H(z)= 

 

z 
 z- 0.9 

 

, z> 0.9 
 

is excited by the sinusoid  x[n] = cos(2p n / 12).  Find the response. 

 

The z transform of a true sinusoid does not appear in the table of z 

transforms.  The z transform of a causal sinusoid of the form 

x[n]= cos(2pn /12)u[n] does appear.  We can use the DTFT to 

find the response to the true sinusoid and the result is 

y[n]=1.995cos(2pn /12 -1.115). 

 



System Response to a Sinusoid 
 

Using the z transform we can find the response of the system to a 

causal sinusoid x[n] = cos(2p n / 12)u[n] and the response is 

y[n]= 0.1217(0.9)n u[n]+1.995cos(2pn /12 -1.115)u[n] 

Notice that the response consists of two parts, a transient response 

 0.1217(0.9)n u[n] and a forced response 1.995 cos(2p n / 12 - 1.115)u[n] 

that, except for the unit sequence factor, is exactly the same as the 

forced response we found using the DTFT. 

 



System Response to a Sinusoid 
 


