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|| Signal and Vectors

* Any vector A in 3 dimensional space can be
expressed as

A =Aia + A2b + Asc

- a, b, c are vectors that do not lie in the same plane and are
not collinear

- A1, A2, and As are linearly independent

- No one of the vectors can be expressed as a linear
combination of the other 2

- a, b, cis said to form a basis for a 3 dimensional vector
space

- To represent a time signal or function X(t) on a T interval
(to to to+T) consider a set of time function independent of

X() 10,00 @) 0



| Signal and Vectors

« X(t) can expanded as

N
x (&) x - (2)

* N coefficients Xn are independent of time
and subscript xa IS an approximation



_ || Signals and Vectors

. Signal g can be written as N dimensional vector

g =[g(t)) g(t2) .vv........ g(tn)]

« Continuous time signals are straightforward

generalization of fin'ﬁggime()nsion vectors
g

N .

t* [a,b]

* In vector (dot or scalar), inner product of two real-
valued vector g and x:

- <g,x> = ||g]|.||x||cos® © - angle between vector g and x
- Length of a vector x:
|IX]|]2 = <x.x>



Analogy between Signal Spaces
and Vector Spaces

» Consider two vectors V1 and V2 as shown in Fig. If V1 is
to be

 represented in terms of V2
Vi=CpVa+Ve

 where Ve is the error.

STAA \'A

Figure : Representation in vector space




omponent of a Vector in terms of another vector.

Vector g in Figure 1 can be expressed in terms of vector x
g=cx+e
g CX
A e e = g - cx (error vector)

- —
X X

Figure 1
 Figure 2 shows infinite possibilities to express vector g in terms of

vector x

Figure 2

g=CiXx+e1r= C2X+ e



'« Let f1(t) and f2(t) be two real signals. Approximation of
f1(t) by f2(t) over a time interval t1 <t < t2 can be given

by
fe(t) = fi1(t) — C2 fa()

where fe(t) is the error function.

* The goal is to find C12 such that fe(t) is minimum over
the interval considered. The energy of the error signal
e given by

1 o T 5
[£i (LY = Chis > di
o) S Lf1(t) 12f2(t)]

To find C12,
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» Solving the above equation we get

A.fl

* The denominator is the energy of the signal f2(t).
* When f1(t) and f2(t) are orthogonal to each other
Cl2 =0.



!

| Scalar or Dot Product of Two Vectors

3
]

1

g-x = |g||x|cos 6

IS the angle between vectors g and x.

The length of the component g along x is: c|x| = |g| cos 6

Multiplying both sides by |x| yields: c|x|* = |gl||x|cos 6 =g-x

Where: [x]* =x-X

gx_ 1
* Therefore: s ks x|
* If g and x are Orthogonal (perpendicular): g X= 0

Vectors g and x are defined to be Orthogonal if the dot product of
the two vectors are zero.
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JComponents and Orthogonality of Signals

3
]

1

». Concepts of vector component and orthogonality can be extended to
- CTS

If signal g(t) is approximated by another signal x(t) as :

g(t) =~ cx(1) S )

The optimum value of ¢ that minimizes the energy of the error signal
IS:

1 2
C =E_x[, g(t)x(¢) dt

We define real signals g(t) and x(t) to be orthogonal over the interval
[t1, t2], if:

f 2 gM)x(@)dt =0

n

We define complex signals+ x1(t) and x2(t) to be orthogonal over the

interval [t1, t2]: "

x1()x3(t)dt =0 or f 2 x{@®)x(t)dt =0

4] f 10



Example

or the square signal g(t) find the component in g(t)
of the form sin t. In order words, approximate g(t) in
terms of sin t so that the energy of the error signal is
minimum

giesmt  0<t<r

Figure 2.17 Approximation of a square signal in terms of a single sinusoid.

2
x(f) =sin ¢ and E =f sintdt =m
0

1 2n 1 - 4 ' 2 ' 4
c=—-/ g(t)sinzdz:—[/ sintdt-l—f —smtdt]:—

(1) t in /
~ — 8i
g =
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Introduction to Signals

* A Signal is the function of one or more independent
variables that carries some information to represent a
physical phenomenon.

* A continuous-time signal, also called an analog signal,
IS defined along a continuum of time.

2 X(t)=Ae", =0

e

ey

_— t
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*Typical Continuous-Time Signals

X(1) X(1) X(7)
A A

VA vnvh g N

Amplitude-Modulated Carrier ~ Step Response of an RC ~ Car Bumper Height After

> [

in a Communication System [Lowpass Filter Car Strikes a Speed Bump
X(7) X(7) X(7)
A 4

[ J’f

Light Intensity from a Frequency-Shift-Keyed Manchester Encoded
Q-Switched Laser Binary Bit Stream Baseband Binary Bit Stream

> |




Continuous vs Continuous-Time
Signals

All continuous signals that are functions of time are
continuous-time but not all continuous-time signals are

continuous
g (a) gn  (b)
jo\?ﬂvﬂ, AAW)
g(r) e(r)
(c) (d)

NAALL TG A
VAVAVAREE

Points of Discontinuity of g(r)




ﬁ Continuous-Time Sinusoids

g(z)= Acos(2pt /To +q)= Acos(2p fot +q)= Acos(woz +q)

Amplitude Period Phase Shift Cyclic Radian
(s) (radians) Frequency Frequency
(Hz) (radians/s)

o(t) = Acos(21;ﬂg+6)

\ /NN N/
\V/
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Elementary Signals

Sinusoidal & Exponential Signals

 Sinusoids and exponentials are important in signal
and system analysis because they arise naturally in
the solutions of the differential equations.

 Sinusoidal Signals can expressed in either of two
ways :
cyclic frequency form- A sin 2l1fot = A sin(2I1/To)t
radian frequency form- A sin wot
wo = 2[fo = 2I1/To

To = Time Period of the Sinusoidal Wave

16



W]l Sinusoidal & Exponential Signals Contd.

X(t) =Asin (2[1fot+ O)
= A sin (wot+ 0)

Sinusoidal signal

x(t) = Aeat Real Exponential

= Aegjwt = A[cOS (Wot) +f sin (Wot)] Complex
Exponential

0 = Phase of sinusoidal wave
A = amplitude of a sinusoidal or exponential signal
o = fundamental cyclic frequency of sinusoidal signal

wo = radian frequency

17



ﬁ Continuous-Time Exponentials

g(t ) = Ae-ut

Amplitude Time Constant (s)

g(1)

L

\
\ ——t
T




1 discrete-time signal is defined at discrete
times.

vy X(n)=Aa", n=0, 1, 2, ...

i, »
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Unit Step Function

Precise Graph Commonly-Used Graph

u(t) u g)

i

i
¥
z

-/

i - |
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Signum Function

1 , ¢t-0
e 0700 u* tr -1
1,0
Precise Graph Commonly-Used Graph
sgn(r) sgn(f)
| 1
-7 -
= £

The signum function, is closely related to the unit-step
function.

21



Unit Ramp Function

ramp(t)
I
i p-- [
1
.t e O. 4
ramp* ¢ - .. eUs - s do-t
.0, ¢+ 0.

*The unit ramp function is the integral of the unit step function.
*It is called the unit ramp function because for positive t, its
slope is one amplitude unit per time.

22



The Unit Ramp Function

ramp(t)
1 it ,>0 0
ramp(z) =i 0 0 V7O u(hdl=u(s)
(A b
|
1
b b ue g
e b e S e e

t=-1 t=1 =3 =5




* Rectangular Pulse or Gate Function

* la, | a2
Rectangular pulse, A
¢ .0 H al2
540
4
1
o
1 - et
% 2
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Unit Impulse Function
As a approaches zero, g° ¢ approaches a unit

step and g approaches a unit impulse* ¢

git) g'(1)

1 L
'

. | T |

L3R
|

I J|‘»‘.:.

L3Ry

Functions that approach unit step and unit impulse

So unit impulse function is the derivative of the unit step
function or unit step is the integral of the unit impulse function

25



Representation of Impulse Function

The area under an impulse is called its strength or weight. It is
represented graphically by a vertical arrow. An impulse with a
strength of one is called a unit impulse.

o(?) 56({-1)
1 i 2 _T
-y by [
1

Representation of Unit Impulse Shifted Impulse of Amplitude5
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* Properties of the Impulse Function

The Sampling Property

‘gto oo t.é.dt' god«.

The Scaling Property
1

. a Zr-. d(o ° - . t. (f.
4]
The Replication Property

9@ o(t) =g (¢

27



*

Unit Impulse Train

The unit impulse train is a sum of infinitely uniformly-
spaced impulses and is given by

*o 1T« -+ ¢ T+, naninteger

0,(1) éAﬂ

Ar.p | T 2T 2T 0T

2T

28



* The Unit Rectangle Function

The unit rectangle or gate signal can be represented as combination of two shifted
unit step signals as shown

rect(t) = u(t+a)-u(t-a)

ect(t
lei()

L]

- |

29



The Unit Triangle Function

A triangular pulse whose height and area are both one but its base width is not, is
called unit triangle function. The unit triangle is related to the unit rectangle

through an operation called convolution.

tri(t)

l

- |

30



Sinc Function

] sin® - ¢*
SINC* ¢

sinc(t)

_r-.vf\/ \/\ P, N |
=5 =d =3 =2%J-1 1 2 3 4 5

31
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Discrete-Time Signals

- Sampling is the acquisition of the values of a
continuous-time signal at discrete points in time

* X(f) I1s a continuous-time signal, x[n] is a
discrete-time signal

X+ n+ - xnT - where T Is the time between samples

32



Discrete Time Exponential and
Sinusoidal Signals

DT signals can be defined in a manner analogous to
their continuous-time counter part

X[n] =A Sfin (2|_|n/No+9) Discrete Time Sinusoidal Signal
= A sin (2[1Fon+ B)

!

x[n] = an Discrete Time Exponential Signal
n = the discrete time
A = amplitude

0 = phase shifting radians,

No = Discrete Period of the wave
1/No = Fo = Qo/2 I'1 = Discrete Frequency

33



*Discrete Time Sinusoidal Signals

—— Period — w— Period —-

il ! . |,II I !'I| l.II I III\ n

i
..

i

»— Period—




Discrete Time Unit Step Function or
Unit Sequence Function

ﬁ

uln]




Discrete Time Unit Ramp
Function

“n
ramp- »- - .
.0, wm

n* 0 .

0 .

ramp|n]
A

8

4-

[ ] m.

;_H,_._HM,II”H
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?iscrete Time Unit Impulse Function
or Unit Pulse Sequence

L4 n‘ .

“n ot oant . : for any non-zero, finite

37



Bl Unit Pulse Sequence Contd.

« The discrete-time unit impulse is a function in
the ordinary sense In contrast with the

continuous-time unit impulse.
* It has a sampling property.
* It has no scaling property i.e.
d[n]= &[an] for any non-zero finite integer ,a"

38



Operations of Signals

« Sometime a given mathematical function may
completely describe a signal .

* Different operations are required for different
purposes of arbitrary signals.

* The operations on signals can be
Time Shifting
Time Scaling
Time Inversion or Time Folding

39
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Time Shifting
o The original S|gnal x(?) I1s shifted by an

amount to. 126
« X(t)- X(t-to) - Signal Delayed- Shift to the

right
X(t - to) Delay
|

Of to-2 2 ¢ to+2t



« X(t): X(t+to)
to the left

Time Shifting Contd.

- Signal Advanced- Shift

x(t + tg) [ Advance

41



Time Scaling

 For the given function x(t), x(at) is the
time scaled version of x(t)

* For a > 1,period of function x(t) reduces
and function speeds up. Graph of the
function shrinks.

For a < 1, the period of the x(t)
Increases and the function slows down.

Graph of the function expands.



Time scaling Contd.

Example: Given x(f) and we are to find y(t) = x(2¢t).

s
//\.\ \\ /\
F A N d LY \// i,

-3 2 B 0 1 2 3 t

s (1) = x(21)
AVAVAV/\VAVAVA

The period of x(f) is 2 and the period of y(f) is 1,

4

43



*

* Given y(?),
- find w(f) = y(3f)
and v(t) = y(t/3).

2

Time scaling Contd.

ye

J

w(t) = 131)

Speed up by 3

[ w(0) = (13)

2%

44



o Time Reversal

« Time reversal is also called time folding

* In Time reversal signal is reversed with
respect to time I.e.
y(t) = x(-t) Is obtained for the given
function

45



Time reversal Contd.

*




Operations of Discrete Time
Functions

Timeshifting n* n* n 4, n, aninteger
n 8["] n
~1 | -4
oln] ‘l’ i gln+ 3 -3
10 2 4 101 J :2
"" 3 5 19 01
4 6 1
L i
" 6 8 ] 3
—M!] 7 ? —c—l—-—.ﬂ escssssse - +
| n 8 10 n 5
9 5 6
10 0 .

+
w
L]
—
(* ]
Domtennd

[
-~
\OW\IO\’JIAD)N-—-+

-
O 0 ~dJ o E W -~ o |
=)

o
o W



Operations of Discrete Functions
Contd.

Scaling; Signal Compression

n* Kn Kaninteger>1

glnl
l() .°
d
A mﬂ -
ﬂ =
[2/7]
gl () 2r2 g[2n]
0O O 2
et 1 1 2 4
e. T 2 4 6
o 3 6 8]
% 4 8 10
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WI Classification of Signals

* Deterministic & Non Deterministic
Signals

* Periodic & A periodic Signals

* Even & Odd Signals
* Energy & Power Signals



Deterministic & Non Deterministic
Signals

Deterministic signals

» Behavior of these signals is predictable w.r.t time
» There is no uncertainty with respect to its value at any time.
« These signals can be expressed mathematically.

For example x(t) = sin(3t) is deterministic signal.

' ) Fr_% ) £

E AN O

[T |
o

50



Deterministic & Non Deterministic Signals
Contd.

Non Deterministic or Random signals

* Behavior of these signals is random i.e. not
predictable w.r.t time.

* There is an uncertainty with respect to its value
at any time.
* These signals can’t be expressed mathematically.

 For example Thermal Noise generated is non
deterministic signal

i@ﬁw e ﬂhﬂf@ " T‘%T* P
AMO T S T T

=D -
0 1 0 30 40 50 80 70 80

!

\;‘I
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? Periodic and Non-periodic Signals

» Given x(t) is a continuous-time signal
* X (t) is periodic iff x(t) = x(t+T,) for any T and any integer
n
 Example
- X(t) = A cos(wt)
- X(t+T,) = Acos[w: t+T,)] = A cos(wt+wT,)=A
cos(wt+2- ) = A cos(wt)
- Note: T, =1/f, ; w* 2° f,

52



mp Periodic and Non-periodic
Signals Contd.

« For non-periodic signals
X(t) # x(t+T,)
* A non-periodic signal is assumed to have
aperiod T =«
« Example of non periodic signal is an
exponential signal




- Important Condition of Periodicity for
Discrete Time Signals
« A discrete time signal is periodic if
X(n) = x(n+N)
* For satisfying the above condition the

frequency of the discrete time signal
should be ratio of two integers

l.e. f, = kIN




|

Sum of periodic Signals

|

o X(t) = x1(t) + X2(t)
o X(t+T) = x1(t+ma1T1) + X2(t+m2T2)
* miT1=m2T2 =T, = Fundamental period
 Example: cos(t- /3)+sin(t: /4)
-T1=(2- )/(- /3)=6; T2 =(2- )I/(- /4)=8;

- T1/T2=6/8 = % = (rational number) =
m2/m1l

-miTi1=m2T2 ©- Find m1 and m2:
-64=38=24=T,



?um of periodic Signals - may not
always be periodic!

() %) x(@) cos siny2s

T1=2- )(N)=2-; T2=(2- )/(sart(2));
T1/T2= sqrt(2);

- Note: T1/T2 = sqgrt(2) is an irrational
number

- X(t) Is aperiodic

56



Even and Odd Signals

Even Functions Odd Functions
g - ¢ Co g- -t
g(t) g(t)
4 A
w[\v&l\aﬂvﬂy- t ﬂv"’v&w‘ t
g(t) g(1)
4 A




ﬂEven and Odd Parts of Functions

. . o to ° . ° t-o
Theeven partof a functionisg . ;. E )
2

. ) ° to . . o t’
Theodd part of a functionisg - ¢ 4 :
2

A function whose even part is zero, is odd and a function
whose odd part is zero, is even.

58



odd functions

Various Combinations of even and

Function type Sum Difference Product Quotient
Both even Even Even Even Even
Both odd Odd Odd Even Even
Even and odd | Neither Neither Odd Odd

59



ﬁ Product of Even and Odd Functions

Product of Two Even Functions

/\\ g,(ng,(D)

/ \ » [
g,(2) fv2¥aT {

\ /.
VIV




Contd.

Product of an Even Function and an Odd Function

O
o]

(2)

4

WA

N L% £

V V

VvV V

,(1)
A

ﬁ Product of Even and Odd Functions




* Product of Even and Odd Functions
Contd

Product of an Even Function and an Odd Function

g,()

\/\/\/\/
YAY

" St

/\\/\




Contd.

Product of Two Odd Functions

* Product of Even and Odd Functions

2,()
A

/\ g,(Dg.(D)

/\> {
v \/ A
gz(t) %‘ > 1
/ / i

SV
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* Derivatives and Integrals of

Functions
Function type Derivative Integral
Even Odd Odd + constant
Odd Even Even

64



Discrete Time Even and Odd

Signals
go no ° go . no g. n. ° ° go . no
Even Function Odd Function
gln] g[n]
A i
-
g. no g n go . go n

65



* Combination of even and odd
function for DT Signals

Function type Sum Difference Product Quotient
Both even Even Even Even Even
Both odd Odd Odd Even Even
Even and odd | Even or Odd | Evenorodd |Odd Odd

66



Products of DT Even and Odd
Functions

Two Even Functions

g (]
4

n g [n] g Jn]
4
n
g [n]
L
W}l




Products of DT Even and Odd
Functions Contd.

An Even Function and an Odd Function

g [n]g[n]
A




!

I:I
3
]

Proof Examples

Change t- -t
* Prove that product of two even
signals is even. xtn) x)y x(0)

x( ) x( 0 x(-

X, xt) - x()

 Prove that product of two odd
signals is odd.

x(®) - oxg) xz(t) .

« What is the product of an even (- 0 x(10) x(- -
signal and an odd signal? .
Prove it! X0  x(t) - x(@):

x(* ) - Even

69



Products of DT Even and Odd
Functions Contd.

Two Odd Functions

g (1]
|

,]"H‘[L. 1“1 = g [nlg [n]
A
gln] ﬁrwjﬂwur n
A
Jﬂwmtqwrn




WI Energy and Power Signals
Energy Signal

* A signal with finite energy and zero power is
called Energy Signal i.e.for energy signal

O<E<e~ and P =0
 Signhal energy of a signal is defined as the area

under the square of the magnitude of the

signal. .
E . .‘X' zigdt

* The units of signal energy depends on the unit
of the signal.

71



Ml Energy and Power Signals
Contd.

;Power Signal

« Some signals have infinite signal energy. In
that caseit 1Is more convenient to deal with
average signal power.

* For power signals
O<P<e« and E =

* Average power of the signal is given by
112
P, - lim 1 x- det

T

72



mp Energy and Power Signals
Contd.

 For a periodic signal x(f) the average
signal power is 2
Py — . X" tI‘ dt
T 1T
* T'Is any period of the signal.

 Periodic signals are generally power
signals.




* Sighal Energy and Power for DT
Signal

A discrtet time signal with finite energy and zero power is called
Energy Signal i.e.for energy signal

O<E<« and P =0

*The signal energy of a for a discrete time signal x[n] is

e i
X

74



DT Signal Contd.

The average signal power of a discrete time power signal

X[n] is
N- 1 )
P lim s s X
n- * N
For a periodic signal x[n] the average signal power is
1
PX C — o |X' n| 2
- The notation * el means the sum over any set of -
-

. consecutive n's exactly NV in length.

Signal Energy and Power for

75



What is System?

lﬁl

« Systems process input signals to produce
output signals

* A system is combination of elements that
manipulates one or more sighals to
accomplish a function and produces some

output. Py

i t h
;r;g:al - Synslte — . signal
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Examples of Systems

- A circuit involving a capacitor can be viewed as a
system that transforms the source voltage (signal)
to the voltage (signal) across the capacitor

- A communication system is generally composed of
three sub-systems, the transmitter, the channel and
the receiver. The channel typically attenuates and
adds noise to the transmitted signal which must be
processed by the receiver

- Biomedical system resulting in biomedical signal
processing

- Control systems

77



System - Example

,

« Consider an RL series circuit
- Using a first order equation:

di(¢)
dt

ny): L

Vi) Ve Vfo) i() - R- d;H(;)

78



Mathematical Modeling of

Continuous Systems

Most continuous time systems represent how continuous
signals are transformed via differential equations.

E.g. RC circuit

System indicatindv.( /) veloglty . *
dt RC RC

- dv(t)
dt

vy s f(0)

79



Mathematical Modeling of Discrete
Time Systems

!

e.g. bank account, discrete car velocity system

Most discrete time systems represent how discrete
signals are transformed via difference equations

v[n] © 1.0y[n - 1] - x[n]

v[n]- v[n- 1]

mo . 3 mo . .

]

80



H Order of System

« Order of the Continuous System is the highest
power of the derivative associated with the
output in the differential equation

* For example the order of the system shown is
1.

dv(t) .

dt

c vy f)

81



] Order of System Contd.

* Order of the Discrete Time system Is
the highest number Iin the difference
equation by which the output is delayed

* For example the order of the system
shown is 1.
y[n] © 1.01y[n - 1]- x[n]



* Interconnected Systems

 Parallel W [ y0=Tko)
» Serial (cascaded)
* Feedback l Y0-50 50 240

T A %) X x(0)
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*Interconneoted System Example

« Consider the following systems with 4 subsystem
« Each subsystem transforms it input signal
* The result will be:

- Y3(0)=y1(t)+y2(t)=T1[x(t)]+ T2[x(t)]

- YA(O)=T3[y3(t)]= T3(TL[XO)]+T2[x(t)])

- Y(0)= y4(t)* yo(t)= T3(T1[xO+T2[x(O)])* T4[x(1)]

n® N\ O ya(t)

> 1 > + > 3
x(1) ¥ y2(1) LI) T T <> (1)
I W ys(t) | T
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Feedback System

*

« Used in automatic control
- e()=x(1)-y3(t)= x(1)-T3[y(t)]=
- y(O)=T2[m()]=T2(T1[e()])
- yO=T2(TL[x()-y3(®)])= T2(TL( [x(O)] - T3[y()] ) ) =
- =T2(T1([x(H)] -T3[y(D)))

Controller Plant .
: t
)+ e [ m() I5 ¥
’ Sensor
y(1)

3 |-
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Types of Systems

» Causal & Anticausal

e Linear & Non Linear

* Time Variant &Time-invariant
« Stable & Unstable

 Static & Dynamic

* Invertible & Inverse Systems

86



? Causal & Anticausal Systems

« Causal system : A system is said to be causal
If the present value of the output signal

depends only on the present and/or past
values of the input signal.

« Example: y[n]=x[n]+1/2x[n-1]

87



Causal & Anticausal Systems
Contd.

lﬁl

* Anticausal system : A system is said to

be anticausal if the present value of the

output signal depends only on the future
values of the input signal.

« Example: y[n]=x[n+1]+1/2x[n-1]



Linear & Non Linear Systems

* A system is said to be linear if it satisfies the
principle of superposition

 For checking the linearity of the given system,

firstly we check the response due to linear
combination of inputs

* Then we combine the two outputs linearly in
the same manner as the inputs are combined
and again total response is checked

* If response in step 2 and 3 are the same,the
system is linear othewise it is non linear.

89



Time Invariant and Time Variant

ﬁ Systems

* A system is said to be time invariant if a time
delay or time advance of the input signal leads
to a identical time shift in the output signal.

yi) - Hx(t ¢t )}
- H{S™(O)Y}:  HS”x(9)}

Vo) - SO}
- 8 0 H X)) s Hx(0)}
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ﬁ Stable & Unstable Systems

A system is said to be bounded-input
bounded-output stable (BIBO stable) iff every
bounded input results in a bounded output.

l.e.

-t |xt)|. M x. e et Iyt)lo M :
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* Stable & Unstable Systems Contd.

Example
- y[n]=1/3(x[n]+x[n-1]+x][n-2])

1
y[n]- -—|x[n]' x[n- 1] x[n* 2] ‘
3

1
Gl bl 111 e 20

1
M M M )M
3 X X X X



? Stable & Unstable Systems Contd.

Example: The system represented by
y(t) = A x(t) is unstable ; A>1

Reason: let us assume x(t) = u(t), then
at every instant u(t) will keep on
multiplying with A and hence it will not
be bonded.



? Static & Dynamic Systems

* A static system is memoryless system
* It has no storage devices

e its output signal depends on present values
of the input signal

* For example
i) = Vou)
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? Static & Dynamic Systems Contd.

* A dynamic system possesses memory
* It has the storage devices

* A system is said to possess memory if its
output signal depends on past values and
future values of the input signal

=1 [wndr

Nn|=xn]+x{n-1]
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* Example: Static or Dynamic?

R

O

v, (1) C vo(1)
J

Input Output

96



Ml Example: Static or Dynamic?

Answer:
* The system shown above is RC circuit
* R is memoryless

* C Is memory device as it stores charge
because of which voltage across it can™t
change immediately

* Hence given system is dynamic or
memory system
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Invertible & Inverse Systems

* If a system is invertible it has an Inverse System

« Example: y(t)=2x(t)
- System is invertible- must have inverse, that is:
- For any x(t) we get a distinct output y(t)
- Thus, the system must have an Inverse
* X(1)=1/2 y(t)=z(t)

X(©) - y(©=2x(0) - X() R
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LTI Systems are completely characterized by
Its unit sample response

* The output of any LTI System is a convolution
of the input signal with the unit-impulse

FESPONSE, 1.€. = x[n]* A[n]

= i x[k)h[n — k]




Commutative Property
x[n]*h[n]-  hln]* x[n]
Distributive Property

x[n]*(h[n]* h,ln]) -
alnl*h ([n]) © (x[n]*AlnD)

Associative Property

x[n]*h [n]*h L[n] -
LAl [y *h, o1 -
(01, [n]) *h, [1]

x[n] y[n] h[n] = yIn]
xIn) e hatm
x[n] gl b 27 i y[n]
hofn] ——1

x[n]

x[n]

x[n]

Properties of Convolution

- h,[n] - h;[n]

+ h,|n]*h,[n]

- hz2[n] - h,[n]

= y[n]

- yln]

= y[n]
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T Useful Properties of (DT) LTI Systems
C

- Causality: hln] * 0  n- 0

- Stability: |AlAT ]

k..

Bounded Input < Bounded Output
for ‘x[n]‘lx T

[yl

o x[k)h[n- k]* x

k..

-'hh°ﬂ°

k..

max
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Periodic Functions and

ﬁ Fourier Series




The Fourier
Series

/P Linear Circuit O/P

Sinusoidal Inputs - OK

Nonsinusoidal Inputs @

Nonsinusoidal Inputs . Sinusoidal Inputs @
<Fourier Series™>




The Fourier

Joseph Fourier
1768 to 1830

Fourier studied the mathematical theory of heat
conduction. He established the partial differential
equation governing heat diffusion and solved it by
using infinite series of trigonometric functions.



The Fourier Series

ourier proposed in 1807

A periodic waveform f(t) could be broken down into an

infinite series of simple sinusoids which, when added
together, would construct the exact form of the original
waveform.

Consider the periodic function

f(t)' f(t' n]’) ;n. . 1’. 2’. 3’.

T = Period, the smallest value of T that satisfies the above
Equation.



The Fourier Series
e expression for a Fourier Series is

N N
fa o, « a COSHW t- - bsinnwt
n- 1 n- 1
4, a, and b are real and are called and 2
Fourier Trigonometric Coefficients I
Or, alternative form
N
f)- ¢, - C cos(mw gt )
n 1

C, " ayand C, arethe Complex Coefficients

Fourier Series = a finite sum of harmonically related sinusoids



The Fourier Series
N
f- C -« C cos(nwi " )
n 1

n

C Is the average (or DC) value of f(t)
0

For n =1 the corresponding sinusoid

ccos(we* ¢ )

is called the fundamental 1
For n = k the corresponding sinusoid WiEe . °
is called the kin harmonic term C%OS( 4 0 ) k

Similarly, wo is call the fundamental frequency
kwo is called the ki harmonic frequency



The Fourier Series

Definition

A Fourier Series is an accurate representation of a
periodic signal and consists of the sum of sinusoids at
the fundamental and harmonic frequencies.

The waveform f(t) depends on the amplitude and phase
of every harmonic components, and we can generate any
non-sinusoidal waveform by an appropriate combination
of sinusoidal functions.



The Fourier Series (Dirichlet’s Conditions)

0 be described by the Fourier Series the waveform f(t)
ust satisfy the following mathematical properties:

1. f(t) is a single-value function except at possibly a finite number of points.
2. The integral for any fo.

3. f(t) has a finite number of discontinuities within the period T.
4. f(t) has a finite number of maxima and minima within the period T.

o T
. ‘ft)dt| ~

In practice, f(t) = v(t) or i(f) so the above 4 conditions are
always satisfied.



ﬁ Periodic Functions

A function f° * ° s periodic
if it is defined for all real °

and if there is some positive number,

I'suchthat f - - T - I












Fourier Series

ﬁ

f* * * be aperiodic function with peridd

The function can be represented by
a trigonometric series as:

f. - 'Oa e a COSm- - o b sinn
n n

n 1 n 1



* t g° - acosn: - . b sinm
n n

n 1 n 1
What kind of trigonometric (series) functions
are we talking about?

cos ° ,cos 2° ,cos 3 and

sin © ,sin 2° ,sin 3









, We want to determine the coefficients,
@, and b )

Let us first remember some useful
integrations.



I . cosm* cosm* d-

1 .
- — . COS" n°m-
> .-

scosn: cosm d

scosn: cosm d



sinm: cosm* d-

| 1 - .
- —e SIN° n° M -d- —. SIN° n° m* - d
o Sinn* cosm d -0

for all values of m.



' . Sinm° sinm° d-

1 - 1
- —_ . COS*' mn'm d- -
2 . .

— e+ COS° n° m: - d
2 -

osinn sin m-d- -0 MH° M

oSinn: sin m*- d° - - n° m



ﬁ

Determine aO

Integrate both sides of (1) from

to



. bn sinn

* n 1

° d.. ....a4.

d-

.0.

0



a4, is the average (dc) value of the

function, f



You may integrate both sides of (1) from
Dic 2° instead.

2

» -4 @ cosmt o bnsinn‘ A

n 1 n 1

It is alright as long as the integration is
performed over one period.



o a . ed COSH°
0 f 0 . "
2. ° . °
. . . b sinn . d
0
*n 1






*

Determine an

Multiply (1) by COSm°
and then Integrate both sides from

to -

.a, " « a_cosn* *  bsinn .cosm° d-



*et us do the integration on the right-hand-side
one term at a time.
First term,

oa cosm: d -0

Second term,

a, ocn cosm: d-



, Second term,

+ + @, cosn cosm: d - a:

.n° 1

Third term,

¢ o b,,s'inn° cosm:- d° - 0

.n° 1



ﬁherefore,

a, - .”f° - cosm* dm 1,2,



*

Determine bn

Multiply (1) by Sinm -
and then Integrate both sides from

to °
..f“‘Sﬁtd‘

‘. .ayc - agosn - - bsinn: . sinm: d

n 1 n 1



*et us do the integration on the right-hand-side
one term at a time.

First term,

. | a,sinm:- d -0

Second term,

. + acosn sinm- d-

'n°1



, Second term,

* ° ancosn ° Sinm: d: -0

n 1

Third term,

. bnsinn' sinm* d-

.n° 1



,Therefore,

.. f . sinm- d - p -

m

p - —-.f' .+ sinm- d- hp,



*‘I he coefficients are:

1
a . o o o« o d.
"2 f
1 .
a - —. f - com d m 1,2,

bm' .. f - sinm d m- 1,2,



!Ne can write n in place of m:

a, Z_.f - o d-
1 :

a - —. f - cosn dn 1,2,
1

b °—.. f° - sinn dn- 1,2,



*The integrations can be performed from
0t 2°  instead.

a, g f - d
1 2

a, —- f cosn dn- 1,2,
1 2

b . f sinn: dn: 1,2,



xample 1. Find the Fourier series of
the following periodic function.










1 . - 2

- . Asinn: d . . - A sinn' d-
2.
1 COSn* 1 - cosn .
SR A o _.A
n O ° n
A

- ——=* - cosn:* cos0° cos2m- * cosn’



T .

n *'cosn: COSO‘ cos2n° * oosn’
n:
.il 1- 1- 1-
n:
44

- —— when nis odd
n-



. 3

i ——* ~cosn: - cosO cos2n° ° cosm’
n.

. 4' ..11. 1. 1.

n.

- 0 whennis even



herefore, the corresponding Fourier series is

——+ sin* + —sin3* +  —sin5: -+ —sin7- -
3 5 7

In writing the Fourier series we may not be
able to consider infinite number of terms for

practical reasons. The question therefore, is
- how many terms to consider?



Then we consider 4 terms as shown in the
revious slide, the function looks like the
following.

1.5 T

| o/ o/ W) -

05 [~ -

f(- ) 0

YW VW fWW\ I

15




1.5

1

0.5

f(- ) 0

=05

=1

=15

1\Ihen we consider 6 terms, the function looks
ike the following.

v

v




hen we consider 8 terms, the function looks
ike the following.

15 | |




1\Ihen we consider 12 terms, the function looks
ike the following.

1.5

" M M d

05 I~ A

f( ) O—J J

- l

_0.5 |-— —

1 O W [

15 I | |




he red curve was drawn with 12 terms and
the blue curve was drawn with 4 terms.

15 I | l

05 [~

=05 |~

15



"

h

15

he red curve was drawn with 12 terms and
e blue curve was drawn with 4 terms.

AVAVAVA\ ’AVAVAVA‘_

05 &

s |

15




1.5

—0.5

=15

he red curve was drawn with 20 terms and

ﬁhe blue curve was drawn with 4 terms.

I | | |




,

Even and Odd Functions

(We are not talking about even or
odd numbers.)



f(. .

A

*Even Functions

Mathematically speaking -

fo . fo

The value of the
function would
be the same
when we walk
equal distances
along the X-axis
in opposite
directions.



*

Odd Functions

f(. .

A

Mathematically speaking -

fo . fo

The value of the
function would
change its sign
but with the
same magnitude
when we walk
equal distances
along the X-axis
in opposite
directions.



Even functions can solely be represented
by cosine waves because, cosine waves
are even functions. A sum of even
functions is another even function.




Odd functions can solely be represented by

| sine waves because, sine waves are odd
functions. A sum of odd functions is another

odd function.

5 s I




The Fourier series of an even function f °
Is expressed in terms of a cosine series.

f’ T @ - a cosme
n
n 1
The Fourier series of an odd function f °

is expressed in terms of a sine series.

f - .. bnsinn°

n 1



xample 2. Find the Fourier series of
the following periodic function.

f(x)







1

,

. [ 'X° cosnxdx

1 . ,
— o X coS nxdx

Use integration by parts. Details are shown
in your class note.



— cosn*
n
4 o
an’ * — whennisodd
n

4 [ ]
an  — whenniseven

n



,This IS an even function.
Therefore, bn |

The corresponding Fourier series Is

2
. CoS 2x cos3x cosdx
—— * 4 cosx 5 5 >

3 : 2 3 4



Functions Having Arbitrary Period

Assume that a functionr- ¢+ has
period, T. We can relate angle

(- ) with time (¢ ) in the following
manner.

* W{E

W is the angular velocity in radians per
second.



m ..

fis the frequency of the periodic function,

t

1

° ‘Z‘ﬂ wheref‘;
2.

Therefore, - . ——¢

T



s I .
- S— 7

—t d
T T

Now change the limits of integration.






cosn: dn- 1,2,

. ft° cos——¢ dt n - 12,



n [ ]

1,2,



xample 4. Find the Fourier series of
the following periodic function.

ft) 4

ft -t when -

when



s t

This is an odd function. Therefore,@ L 0

r
2 2 n
. f t° sin¢

r . T

T
2

t- dt

b» -

4 2° n
- f t° sine

T0 . T

t dt



. . tsin: t dt

T T :

0

T

2
4 T

e ° ° t. s @ Sin.
T T 2

4

Use integration by parts.

t- dt



4 T
n B 2 sin *
T . 2 n. .
2T = n
>-sin* ——
n: 2

b * () whennis even.



Therefore, the Fourier series is

2T S RENE 1 - 6 - 1

— Sin® =t ° ——gjsin° =t *—=sin:

.10. .
t: ° -

T



ﬁ'he Complex Form of Fourier Series

f' 9@ ¢ a cosmt  + b sinm-
n n
n 1 n 1

Let us utilize the Euler formulae.




1he Nth harmonic component of (1) can be
xpressed as:

a cosn: - bn sinn -

g . gin gin . g in
‘' a K o bn
2 21
ejn. . e jn. . ejn. . e jn
a n . lbn
2 2



* cosm* * b nsinn°

an"b n ej"' . a, ]bn e‘in'
2 2
Denoting
a, - jb , a - Jjb
cn ’ c.n e ¢
2 2



acosn: ° b sinn-
n n

' cne]n. - c. e’
n



* The Fourier series forf I

can be expressed as:

C.

e

. jn.



he coefficients can be evaluated in
he following manner.

G Jb,
cn
2
L f e L sinne d
— cosm® *t =, o sinn ° *
2. 2 ..
L . .
. f+ - ° cosm jsinm: * d-
2. ..
1 .
. f‘ " d






n n C
.
2 2
Note that C . is the complex conjugate of
Cn Hence we may write that
1 e
c, alk f- - e d

n- 0, 1,- 2,



ﬁhe complex form of the Fourier series of
[ V\iithperiodz ’ is:

fo o ° °e cne-’n.

n. [ ] L



xample 1. Find the Fourier series of
the following periodic function.




Aif 0 x-

CAf - - X

0 otherwise

A0 f(x)dx

2° .O

Ao- O



f(x): cos(n: Xx)dx

A2- 0 A3- 0

A6- 0 A7: 0

A4-

A8:



- i f(x)- sin(n- x)dx

Bl - 6.366 B2 - 0 B3 - 2122 B4 -

B5- 1.273 B6 - 0 B7 - 0.909 Bg -



C(n)

Complex Form

f' C e . cejn- cn. .f.

2° O

f(x): e- 1li- n- xdx



()0
C4) -

C(- 4) -

0

0

N

f(x): e- 1i- n- xdx

"0

C(1) -

CO) -

c(- 1) -

C(- 5) -

- 3.183i

- 0.637i

3.183i

0.637i

C@ - 0

C@6) -+ 0

C(- 2) -

C(- 6) -

0

0

c(3) -

C(7) -

c(- 3) -

C(- 7)-

- 1.061i

- 0.455i

1.061i

0.455i



The Fourier Series

ecall from calculus that sinusoids whose frequencies are
integer multiples of some fundamental frequency fo = 1/T
form an orthogonal set of functions.

* n,m




The Fourier Series

e Fourier Trigonometric Coefficients can be obtained
f&om

a 1 .to Tfl‘)dt average value over one period
0 T ‘
2 ..
a, e ficosnw Jgdt >0
0
2 - T .
b fosinnw  tdt >0

n T .to



The Fourier Series
0 obtain ax

T T
. f1)COSKkW ytdt- .« aCoskwedj

0
Noor .
-+« (acosnw ¢+ b SINnWHCOSkW! df
0
n- 1

The only nonzero termis for n =k

T - T
'S focoskw o g ak T

Similar approach can be used to obtain bk



le 1 determine Fourier Series and plot for N =7

1)
S— 1
/ 1

“ag
T 1 o I I ¥ T 7
2 4 4 2 4
1 47
a T ft)dt
1 112 1 T4 1
. foyde - . 1dte —
T - 12 T - 74 ?



Examre 1(cont.)
lven function exhibits symmetry around the vertical axis

|
at %= 0 sothat f(t) = f(-t).

b, - T " ft)sin nwt dt

. 1sinnwe dt: O
T - r1/4 " dé

Determine only an

? T4

a - —. 1lcosnwidt
T - T/4

2 T/4
SINNW ¢
n - 114

0



Example 1(cont.)

a _:sin " sin n..
n . 2. 2
a, * 0when n- 2 4,6,
and 2(- 1)q
a, - whenn 1, 3, 5
n
n- 1
where q- ( ) (\/\17-\_/\
2
1 Moo e l
1) — . Cosnwt "
2 n* 1,odd n
2 - 2 2 2 :"v"
a —,d ya o ,a -_ -
1 3 3 5 5. 07 5 > 0




Symmetry of the Function

Four types

Even-function symmetry
Odd-function symmetry
Half-wave symmetry

Quarter-wave symmetry

W

Even function

£ - f( 1) mneo

=i : 4 112
' . frcosnw

0'@1/"7’”TO

f\)[\ -
B~
N~
P

B~

t dt



ﬁ Symmetry of the Function

Odd function

| 4 112 _
- | o b — o fosinnw rdt
2 % | i 2 & Ty T ©
Half-wave symmetry
T
fo - A ?)

an and bn =0 for even values of n and ao=0



Symmetry of the Function

Quarter-wave symmetry

Odd & Quarter-wave

w |-
™

|
37 =
4

N~
B
|~ -
BN -
el
N~

All an = 0 and bn = 0 for even values of n and ao=0

8 1/4 _
.  fosinnw tdt ; for oddn




r Even & Quarter-wave

1 Symmetry of the Function

All bhn = 0 and an = 0 for even values of n andao=0

8 T1/4
O ftr)cosnw tdt ;for oddn

4}

Table 15.4-1 gives a summary of Fourier coefficients
and symmetry.



le 2 determine Fourier Series and N = ?

. 2 .
r-  — + wWg4 -+ —* 4radls
2 T
To obtain the most advantages form of symmetry,
we choose f7=0's . 0dd & Quarter-wave

All an = 0 and bn = 0 for even values of n and ao=0

8 71/4 _
.  fosinnw tdt ; for oddn

b._
nTO 0



Example 2(cont.)

I,I
!
b
i

1o

4
&
4
fm £ fmt 0. ¢ T/4
114 T\
32 2
@ —t 0 ¢t T/4
8 -32 . T4
. o«  1SINnWId]
T 0
* Sinnwt T4
512 o  [COSnwi *,
2 nzwg W )
32
sin — , for oddn




Example 2(cont.)

The Fourier Series is
N ne
fo- 324 - n—sm ——sinawz

2/

The first 4 terms (upto and including N = 7)

1 1

f1). 3.24(sin 4¢- —sinl2t+  ——sin 20¢-

9 25

Next harmonic is for N = 9 which has magnitude
3.24/81 =0.04 <2 % of b1(=3.24)

Therefore the first 4 terms (including N = 7) is enough for
the desired approximation

: for oddn

I
——sin 28¢)
49



* Exponential For]rvn of the Fourier Series
fo- ¢, « C cos(nwi,* )

n
n 1

C 0 is the average (or DC) value of f(t) and
(@, jb),
Cn . 2 . C.n .
where 2 . 1.2
C - F . \/a” b”
n n
2
b,
tan —. ifa -0
and . . . a,.
1 bn )
180 tan - —. ifa 0



ﬁ Exponential Form of the Fourier Series

a, + 2C cos- and b - 2C sin
n S . . i
Writing .
Euler's iden(t:ty W(tl’lWOt ]\;')"t’a’ form using

. . jnWtO . jnWtO
f- C 4+ « Ce - Ce
n- 0
where the complex coefficients are defined as

1

. .0 'jnWOtdt. Ce i on
C T ” ft)e ¢

n

ad C C *

complex n T



le 3 determine complex Fourier Series

f()

A

Even function

OSTESN
H

-AWF

The average value of f(t) is zero

1,
C * T.Z‘O ft)e

n

T

We select ty * ° define

|
T Tl
2
[ ] CO [ ] O
- jnwO0f dt
JOW o © m



Example 3(cont.)

1 m .
. [fDe ™ dt
T
1 7 ot 1 ”
. Ae dt+ — . Ae dt*
T 112 T - 714 T
4 'emt | T/4 * mt |T/4 - mt |T/2 .
- 712 - Tl4 714
ml
A - . o -
Zén 2 . 2@ jn* 12 o jn . e]n
jnwoT
-0
A . n _ .
.4sin —- 2sin(n- ) . 24
2°n - 2 . —Sinn
0
Sinx n
- A wherex —
X

2

: for evenn

: for oddn



Example 3(cont.)

Since f(t) is even function, all C» are real and = 0 for n even

For n=1
Asin: /2 2A
Cl. ._.C-l
) .
For n= 2
sin-
C, - 4 -0 C _,
For n= 3

Asin(3- /2) - 24 .

C;-
3+ /2 3°




Example 3(cont.)

The complex Fourier Series is

where

f1)- © 24 j3wot . jwot
3.
ﬁ Wt . jwot © 24
44 44
——COoswi*, ——CO0s 3wt -
3-
4 - (- D1
. COSnW{
n- 1 n
n* odd
For real f(t) IC F .

- 2jsinx




le 4 determine complex Fourier Series

HNNNE

Even function T
4

Use jnwo - m

1 T/4 . mt
Cn ™ . 18 dt
T " 74
1 0 y mtlT/4
. I’I/ZT - T/4

1 - mT/4 - mT/4
—e e * e



Example 4(cont.)

1
C . .eln/Z .e]n/Z.

. jn2-
-0 N7

evenn: 0

(19 P2 s podd

To find Co
1 T
C,h: . t)dt
0" Ty
1 T4 1
° 1dt. -

T - T4 7



"

The Fourier Spectrum

he complex Fourier coefficients

C

C

n

‘|C

Amplitude spectrum

n

Phase spectrum




1 The Fourier Spectrum
|

e Fourier spectrum IS @ graphical display of the
amplitude and phase of the complex Fourier coe
at the fundamental and harmonic frequencies.

Example

A

|
i 508 T —
> 9 4

A periodic sequence of pulses each of width -




he Fourier coefficients are

ﬁ The Fourier Spectrum

1 m .
C n  — Ae Jmwot dt
T T2

For p* (O
A -

C - . e Mo dt
n
T R

- A

L jawor 12 jawor 2

jnwoT

ZA - o nW o
SIn .
nW% - 2




ﬁ The Fourier Spectrum

c . A+ sin(nw  /2)
TT (awe 12)
- A- sinx
I x
where — x+ nwg /2
w0 At




ital's rule

The Fourier Spectrum

a Ic,|
-1 forx: O AS &lrul
X T \
A\( W* 5w
sin(n- ) o 0
- 0 N 1,2,3,: j w - 10w
. l 0
6 Y 2x Lof 2 4n 6
5 5 > 0 5 5 5
w
(a)
0
(rad)
e R o e
| | | | | |
T ar “2x @ 2 Y 6
5 5 > 5 5 5



The Truncated Fourier Series

A practical calculation of the Fourier series requires that
we truncate the series to a finife number of terms.

The error for N terms is

D MVEIRENY)

We use the mean-square error (MSE) defined as

1

MSE- : Z - 2()dt

T

MSE is minimum when Cn = Fourier series” coefficients



The Truncated Fourier Series

|

) overshoot . 0
/ 10% N=15

_A - A_A ‘ ‘ & - - - - ‘

“\ v ' Y

\

The Gibbs phenomenon




Circuits and Fourier Series

t Is often desired to determine the response of a circuit
xcited by a periodic signal vs(f).

Example 15.8-1 An RC Circuit vo(t) = ?

f(r) V vy

v(1) (_f) ==l

0

|
B~
NI~ -
»

4
2

-
4
Example 15.3-1

(a)

An RC circuit excited by a periodic voltage vs(1).



Circuits and Fourier Series

ach voltage source
IS a term of the
Fourier series of vs(

(D)

An equivalent circuit.



ple 5

Using
phasors
to find
steady-state
responses
to the
sinusoid

vs3(1) Cﬁ)

(c)

v +> ST B e
3 C_ J3wC

R

+ 1
5 e W 1
Vs (‘) JS5wC s

(d)



1 Noo2(- 1Y
v . e COSHW{
2 p lodd n
where (n . 1)
q° 5
The first 4 terms of vs(t) is WO - 2 rad/s
1 2 2 2
vt) - = -+ —cos2t+ —cos6r + — coslOr
2 e oo« 3 ... .5,
v v o (t v (t Vvt
S ()) Sl() SB() S%

The steady state response vo(t) can then be found using

superposition. VOZ.) . ‘éO t) N Vi 0{) * ‘53 t) % og)



ple 5 (cont.)

he impedance of the capacitor is

1
Z,  — - forn: 0,1, 3,5,
JAWE
We can find
1
jnwoC
vV - \Y . forn - 0,1, 3,5,
on 1 sSn
R.
jn Cwo
1 jn WOCR



w ple 5 (cont.)

J[he steady-state response can be written as

Y

on

vol) Vo

()

- S”l cos(nwty + V- tan  4n)
J1- 16n 2

In this example we have

‘V
2

s0

2
| = forn- 1,3,5
0

y Vsn - 0 form - 0,1,3,5



.I1p|e 5 (cont.)
1

e =

v 1) - cos(n2t+  tan ‘4n) :forn- 1,35

v.p)  0.154cos(2s+ 76- )
v ) - 0.018cos(6s+ 85 )
v t) - 0.006 cos(10¢+ 87- )

1

—+ 0.154 cos(2t - 76 )- 0.018cos(6z- 85° )
2
- 0.006 cos(10r - 87 )



|| Properties of Fourier Series

FS

| xt o o e o g
- LInearity
xte FS . a,, vt .F:S', bk
FS

Axt* Byt° o« o . Aak' Bb




.l Time Shift

X' 8 - jkwoZ0

a,

phase shift linear in frequency with amplitude unchanged
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Time Reversal

unique representation for orthogonal basis



!

} Time Scaling

3
]

1

:positive real number

x * o t* .periodic with period 7/a and fundaments

frequency awo

T .

xo ° to co akej V(y 4
k. o o

ak unchanged, but x(ar) and each harmonic component are

different
k=l s ?:;
< T/
X(et) {
Vo e ® >
we = oAl :0((3-1-:)




.I Multiplication




* Conjugation

x. tO OF§. a:k

If x° ¢ real

unique representation



Differentiation

dxt* ,
” C kW aay
\kwo*
'kWot )
d (a ¢! ) =|ikw a,e k=1
" = R,
d)t' ( R k"l
L
m k=3
I\ [_009 Wet + J."""‘.__,..""‘r ]
| d
4 @

= — S on—\'}mw°x

_|£ \ sk
it qebTLe)
j:: e V Cos wh

&
“4‘{. 5 [ ~ Wk




.I Parseval’s Relation

1 po P 2
7Pl

total average power in a period T

1,
T T

, Jhowor zdt- ’ak‘z

a

average power in the k-th harmonic
component in a period T



ontinuous-Time Signal Analysis:
The Fourier Transform



| Chapter Outline

 Aperiodic Signal Representation by Fourier Integral
 Fourier Transform of Useful Functions

* Properties of Fourier Transform

 Signal Transmission Through LTIC Systems

* |deal and Practical Filters

 Signal Energy

* Applications to Communications

» Data Truncation: Window Functions



Link between FT and FS

Fourier series (FS) allows us to represent periodic
signal in term of sinusoidal or exponentials ejnw.t.

Fourier transform (FT) allows us to represent
aperiodic (not periodic) signal in term of exponentials
ejwt.

XT  (f Jjnwt
() Xt De
n
A ne oo
To/ 2
1
: : ; . D T .xT (t)e Jnw o t
L t 0 t & ‘ T 0
2 i 2 2 ! 0 {i



Link between FT and FS XT@

m

Y
1 1 | 1 s T 0 N -
=L _t 0 t h t Y 5 ’
2 2 2 2 B B
. < x. t" ||m )CT { ﬂj
TO . . - oW 0 . O To. . 0

As To gets larger and larger the fundamental frequency wo gets smaller and smaller so
the spectrum becomes continuous.

ol p TiX(nW)) X(W)|




*The Fourier Transform Spectrum
The Fourier transform:

X(W) . «x(@e Mt
X(w)- X(*v)e ‘ L Aw)

T

The Amplitude (Magnitude) Spectrum The Phase Spectrum

The amplitude spectrum is an even function and the phase is an odd function.

The Inverse Fourier transform:

x(1):

5 « XI (W)ejwtdW



H Example
o

n
magnitude, and the spectrum

d the Fourier transform of x(t) = e-atu(t), the

Re(sz

SOIU“O”: S_plane
- . 1 S=: W
Xw) , .o ifa- 0 .
. | 2 W
0 as jw |
1 . |
‘X(W)‘ : - X(w) - - tan (w [a)
NP .
How does X(w) relates to X(s)? a |
| | ROC
Co 1 -
X(@s) .e “e dr - e U
. a s :
X(s)- If Re(s): -a

a* s
Since the jw-axis is in the region of convergence then FT exist.



T Useful Functions
|

Unit Gate Function

- 0 x|+ ¢+ /2
Coxe
rect +—-++ .05 x|+ 12
1 x|+ - /2

Unit Triangle Function

T 2y | W2

- /2

© /2

- /2

- 2



1 Useful Functions
|

nterpolation Function

Sin

sinc(x) = ——
X
sinclx) - 0 forx - - k
sinc(x)
I
~ e~ N, LN~ X
-6 S 4nm 37w —2>{7r 0 Jr\'/ZJT 37 4w S5m 67



Example

Find the FT, the magnitude, and the phase spectrum
of x(t) = rect(t/- ).

Answer -

X(w) .rect(t [+ )e ™ dt- - sinc(w: /2)

- 12

What is the bandwidth of the above pulse?

The spectrum of a pulse extend from O to - . However, much of the spectrum is
concentrated within the first lobe (w=0to 2* /- )



Examples

de the FT of the unit impulse - (1).
Answer

Xw): .0 (De Mdr 1

Find the inverse FT of - (w).
Answer

1 . 1
x@ — o0 WeMaw —

2° .. 2
so thespectrumof a constantisan impulse

1. 2+ - (w)



!

] Examples

Find the inverse FT of -+ (w-w 0).

Answer
x(7) i o (Wt We Maw - iejww
2. 5.
sothespectrumof a complex exponent IS a shiftedimpulse
e 2+ - (wrw o) and e M0 20 (wr W)

Find the FT of the everlasting sinusoid cos(w t).

Answer .
COSWOZ" E. Jgé - e JWE .

er- Mgt e M. o (W' VM)' . (W' WB-



H

) Examples

Fir.Ld the FT of a periodic signal.
Answer

x(t)‘ . D% Jnwot w, - 5. T .

TaketheFT of both sideand use linearity propertyof FT

X(w)- 2: n | D (w nw)

0



T Examples
Find the FT of the unit impulse train- _ #)(

Answer

e
. . T ]I’lWOIf
B0 e

Ono . .

Xw) e (weoaw)
T

On...



TABLE Fourier Transforms

No. x(1) X(w)
1 e Yu(t) 1 _
a+ jw
2 e“'u(—t) ] .
a— jw
3 e -
4 te *"u(t) ——l——
(a+ jw)?
'
5 t"e " ul(t) n
(a + jo)rt
6 3(1) 1
7 1 2nd(w)
8 e/ ot 278(w — wyp)
9 cos wgt 76w — wg) — 8w + wo)]
10 sin wyt Jn[8{w + wy) — 8(w — wp)]
1
11 u(t) Té(w) + —
jo
2
12 sgnf —

Jw



TABLE Fourier Transforms

No. x(t) X(w)
= .
13 658 il ~ [ — o) + 8(0 + wo)] + —22—
2 wy — w-
14 st st w = [8(@ — o) ~ 8o+ wo)] + —2—
2j Wy — W°
; 20
15 e ' sin wot u(t a>0
of u(t) @+ jw)? + w?
16 e ' cos wot u(t) a + {w . a>0
(@ + jw)” + wj
17 rect (i) T sinc (w_r)
5 2
W w
18 Z sinc (Wt t(—)
& inc (Wt) rec W
t : 5 ~ wt
1 — — sinc” | —
9 A (r) 5 sing ( 2 )
%4 Wt w
n Lee(¥) a(d)
0 7 sinc ( > ) A W
i o 2
21 Z 8(t —nT) Wy Z d(w — nwy) wy = =
n=—0c n==00
22 e~!"/2’ o 2me=7 w12




iroperties of the Fourier Transform

Compression in the time
domain results in expansion in

the frequency domain
L w
X at - —X —-
‘a| e a

Internet channel A can transmit 100k pulse/sec and channel B can transmit 200k
pulse/sec. Which channel does require higher bandwidth?



WP roperties of the Fourier Transform

x* t* - wX°® .
B () X(w)

Example: Find the FT of eatu(-t) and e-ap

tiefv orRigh® Shiftin Mirme Time shift effects the phase
and not the magnitude.

) ® ° ° ° ° | ] 4
X* ¢t - X W
Example: if x(t) = sin(wt) then what is the FT of x(t-to)?

Example: Find the FT of e at*



BProperties of the Fourier Transform

Mulbipiwaiion by & Compglex Expoaeriial{Feq. Shift Property)

/;}f
x* t° X W
1
xt® COS: Wt —- X We W= X- we we e
2

coswot is the carrier, x(t) is the modulating signal (message),
X(t) coswot is the modulated signal.



Example: Amplitude Modulation

x(t)

WAWAW/\WAWANE
2\ VIV V-

Example: Find the FT for the signal
x(t) © rect(t/ 4) coslOt




Amplitude Modulation

m'(t) m(r) cos w1
(modulating signal) (modula:d signal)
Modulation Demodulation
5 . t) cosw ¢+ 0.5m(r)[1- cos2wrt

Then lowpass filtering

(a)

/\ -

e

(b)

m(l)\’. A m(r) cos w,.t
.l' A
/\/\ /\/ use £
A /\/\ — __A




*nplitude Modulation: Envelope Detector

A+m(t)>0 forallt A+m(t) >0 forallt

(b) (c)

Envelope :

m Envelope
: |A + m(s)]
VVVVVV"" U Vw RS ATA T A

Wyl S




1- Transmission of different signals
over different bands

2- Require smaller antenna

l

0
ml,(!) Modt;lalur
Al

m; ) Mudgluor
éw:
() Modulator

n”
éwﬂ

(b)

RF

Applic. of Modulation: Frequency-Division Multiplexing

demodulator .

Bandpass

filter

P . Dcmo‘llulawr ":1(0

@y Dcnm:!ulalm MI(I n
: 4

w, |p] Demodulator iy

=



W] Properties of the Fourier Transform

Digferengigiioninthe reqgaerncy Domain

d n
dt”

Example: Use the time-differentiation property to find the Fourier Transform of the
triangle pulse x(t) = - (t/- )




B Properties of the Fourier Transform

lIstegravioninthe Time Domain

x(2) = y(1) - X (w)Y(w)

1
x)x(?)*, Z—XQN)' X ,(W)  Frequency convolution



Example

Find the system response to the input x(t) = e-at u(t) if the system impulse response is
h(t) = e-bt u(t).



W} Properties of the Fourier Transform

L— p o — . - - N
'] P Y T T ML Y o “f\f\"’f\n EvNIErNe™ 0w Iars Vﬁf\r‘lf\f"lh

and hes K then i3 an energy signals:

2 1

E' ° dt' °

xt° X V\Fdw

2.

Real signal has even spectrun_ £ i

0

X V\F dw

Example
Find the energy of signal x(t) = e-at u(t). Determine the frequency w so that the energy

contributed by the spectrum components of all frequencies below w is 95% of the
signal energy Ex.

Answer: w=12.7a rad/sec



Properties of the Fourier Transform




TABLE Fourier Transform Operations
Operation x(t) X(w)
Scalar multiplication kx(z) kX (w)
Addition x1(2) + x(2) Xi(w) + X5 (w)
Conjugation x*(t) X*(—w)
Duality X(1) 2 x(—w)
1

Scaling (g real) x(at) —X (9)

la| a
Time shifting x(t — 1) X(w)e /@
Frequency shifting (v, real) x (t)el ™! X (o — wp)
Time convolution X1 (1) % x2(1) X () X5(w)

Frequency convolution

Time differentiation

Time integration

X1 (r)x2(2)
d"x
dr"

/ x(u)du

'i'Xl(w) * Xo(w)
2

(Jw)" X (w)

X ({1))

—— + 1 X(0)8(w)
jw



Sampling Theorem

A real signal whose spectrum is bandlimited to B Hz [X(w)=0 for |w| >2- B ] can be
reconstructed exactly from its samples taken uniformly at a rate fs > 2B samples per
second. When fs= 2B then fs is the Nyquist rate.

n: ot __["\.3 : & ¢ 10w | 100 @~
x(0): x(nT): x(¢) e * (¢t nD) : e— s

ne o L\ =

1 n: ° . 1
- JNnWst
x(): x(nT)- x(1) — € AN

T ne o+ - Teog S0 01 e —a0m " —low | 10w X pro—
. 1 n - —20 -3 5 20 f(Hz) -
Xw):  — -« X(w* nw,)

T ...

} ' Pruna]fluA
__.11.*41 boiln, /\ /\

0.3 010 Hr w-*
e
Figure 8.2 Effects of undersampling and oversampling.



onstructing the Signal from the Samples

¥
j‘ ‘ x(r)
;". Pm:mlfl(ei .’.“.‘f"
Xw) - Hw)  X(w) T /\ /\
a—-—klllmf f‘uj b o
x(t) . h(t)*x(nT) -03 -0.10 02 1>  rapaie =

x(@) - h@* ° x(mD): (¢ - nl) A
n l [ — SlLPF |_s
~*.‘,.:-’.I..(. ]’(r;':t ot A

x(0)+ o x(nDh(t: nT)

x(n)+  « x(nT)sinc(2- B(t+ nT)




Example

Determine the Nyquist sampling rate for the signal
X(t) =3 + 2 cos(10- ) + sin(30- ).

Solution

The highest frequency is fina = 30+ /2- =15 Hz
The Nyquist rate = 2 fmax = 2*15 = 30 sample/sec



Allasing

If a continuous time signal is sampled below the Nyquist rate then some of the high
frequencies will appear as low frequencies and the original signal can not be

recovered from the samples.

Frequency above Fs/2 will
appear (aliased) as frequency

below Fs/2

LPF

N

rTIl[Tf

00— T =

With cutoff
frequency
Fs/2

rTI‘[TT

0= T =

A




%antization & Binary Representation

X(t)
L 2"

N
) I

O FrLr N W
|
!
|
=
| R L
—T 7™
- ¥
11l
| S R |
lll‘
LI |
=t
| R B |
|
| B O
LI S |
| FE A
I I
| DR
| GO SH |
E )
LI R |
LI R |
oo
| B |
| S |
| B S |
| DN S )
v K 1
| O
P
LI |
LI |
L)
o
L}
L)
O KB KB
P O O
P O k-

_ R L -------------------- 010
L .. number of levels o S— 1 ___________________ 001
n: Numbgr of bits .| R ———— 000
Quantization error = * x/2

O 111
110
B mdemmmp e e b e e
X Ymax ~ *min P T I e T 101
1 A 0 I ———
0 f 011




Example

A 5 minutes segment of music sampled at 44000 samples per second. The
amplitudes of the samples are quantized to 1024 levels. Determine the size of the

segment in bits.

Solution

# of bits per sample =In(1024) {remember L=2n}
n = 10 bits per sample
# of bits =5 * 60 * 44000 * 10 = 13200000 = 13.2 Mbit



Discrete-Time Processing of
Continuous-Time Signals

r-r----------------------------------- A

| |
Analog W[ et | 2 [ Discretetime | ¥ [ rgear | 1 3l
23081 Prefilter |-={—p| [deal | T | Discrete-time | - e
signal system D/A

LAEE Mttoreeee “gry 0 o~

0 ' 012345 —{Tl 7 w111 ' =
101 2345 —<{T}— n 0 '
) Ideal v(n) 1 (nh ") = )
X, F) A;D XiF) Y(F) D/A VF
> V(F | | YAF)
i ) yaus /\ /l*\) /\I; /r{‘\(
-8B 0 B F Sf; 0 F, F F, 0 F,F 0 F
Figure Characteristics of an ideal A/D converter in the time ard frequency Fgure Charactevistics of an ideal D/A converter in the time and frequency

domains. domains.



Discrete Fourier Transform

* X(k)- . x(n)e°j2° Jnl N

(1) ) O<=> T X(w)
0f———7——sf e /Dl \ j—
@) 1 | (b)
X - e "
(w) T .x( ) _
x(n < X(ew)
\ £
DI —t fge P TR ol %% I P
N XwW)*  .x(e ™ dt .

tl”“l“tm.. : tﬂ““llm;..r‘ i”mmmtm‘"; - Ilm4:”;”‘”“““9”?”‘ ” Ptieasptt I, ”“mn}fﬂ

‘-:‘f’=?-—-—e.

(e) (f)
Figure Relationship between samples of x(7) and X ().



Sampling Theorem

* Link between Continuous and Discrete

x(?) x(n)
x(2) x(n)
M !MHHL
Continuous Discrete
X . > X(s) x(n) . X(2)
X(s)  ox(@e ar X@): . x(n)z"
«(  Fourier Transform XGw) ) Discrete Fourier Transfor[nX(k)
2 k

X(w)- .. x(H)e ™ dt

X(k)- . x(n)e'j N

n- 0



i HILBERT TRANSFORM

* Fourier, Laplace, and z-transforms change
from the time-domain representation of a
sighal to the frequency-domain
representation of the signal

* The resulting two signals are
equivalent representations of the
same signal in terms of time or
frequency

* In contrast, The Hilbert transform does not

involve a change of domain, unlike many
other transforms



i HILBERT TRANSFORM

: Strictly speaking, the Hilbert transform is
not a transform in this sense

- First, the result of a Hilbert transform is
not equivalent to the original signal,
rather it Is a completely different signal

- Second, the Hilbert transform does not
involve a domain change, i.e., the
Hilbert transform of a signal x(t) is
another signal denoted byx(¢?)in the
same domain (i.e.,time domain)



] HILBERT TRANSFORM

* The Hilbert transform of a signal x(t) is a
signal x(¢r) whose frequency components
lag the frequency components of x(t) by
90-

- x(?) has exactly the same frequency

components present in x(t) with the same
amplitude-except there is a 90« phase delay

- The Hilbert transform of x(t) = Acos(2+ fot + - )
is Acos(2+ fot++ =-90: )=Asin(2- fot+ - )

272



] HILBERT TRANSFORM

* Adelay of - /2 at all frequencies

- ej2- ft Will become 2405 . 2 4

- e42- fot WIll becomee ¢ 7o 2) ., 2 Aot
* At positive frequencies, the spectrum of the signal
IS multiplied by -j
At negative frequencies, it is multiplied by +/

- This is equivalent to saying that the spectrum

(Fourier transform) of the signal is multiplied
by
-/san(f).

273



HILBERT TRANSFORM

1

« Assume that x(t) is real and has no DC component : X(f)|=o0 =
0,

then Fxt): - - jsan(Hx(

» 1
Fo () —
1 - x(-)

. 1
(0 _t x(f) - = - d-

VR

- The operation of the Hilbert transform is equivalent to a
convolution, i.e., filtering

274



Example

« Determine the Hilbert transform of the signal x(t) =
2sinc(2t)

« Solution

* We use the frequency-domain approach . Using the scaling
property of the Fourier transform, we have
1 . f . f . . 1- . 1-
Foox(f) - 2—- -2 o oD S
X() 2 .2 .0 . ! 2. f 2°

* In this expression, the first term contains all the negative
frequencies and the second term contains all the positive
frequencies

* To obtain the frequency-domain representation of the Hilbert
transform of x(t), we use the relation F* x(©)* = -sgn(HF[x(t)],
which results in L. .

F- X(t)° ]..fz—]..f —2

» Taking the inverse Fourier transform, we have
x() -+ je; “Sinch) je 7 'sincd)c ¢ jle T+ e )sinc(r)

g 2sin( ¢ dsinc £) - 2sin( -+ psinc (¢)

275



] HILBERT TRANSFORM

Obviously performing the Hilbert transform on a signal is
equivalent to a 90- phase shift in all its frequency
components

* Therefore, the only change that the Hilbert transform
performs on a signal is changing its phase

* The amplitude of the frequency components of the signal
do not change by performing the Hilbert-transform

x(?)
transform changes cosines into sines, the Hilbert
transform of a signal x(t) is orthogonal to x(t)

* Also, since the Hilbert transform introduces a 90- phase
shift, carrying it out twice causes a 180 phase shift,
which can cause a sign reversal of the original signal



!

} HILBERT TRANSFORM - ITS PROPERTIES

3
]

1

: Evenness and Oddness

* The Hilbert transform of an even signal is odd, and
the Hilbert transform of an odd signal is even

- Proof
« If x(t) is even, then X(f) is a real and even function
* Therefore, -jsgn(f)X(f) is an imaginary and odd
function
« Hence, its inverse Fourier transform x(¢) will be
odd
« If X(t) is odd, then X{(f) is imaginary and odd
* Thus -jsgn(f)X(f) is real and even
* Therefore, x(¢) Iseven

277



w HILBERT TRANSFORM - ITS PROPERTIES

* Sign Reversal

* Applying the Hilbert-transform operation to a signal
twice causes a sign reversal of the signal, I.e.,

Xt). . x(t)

— Proof

FE@] - - jsgn( ) X( f)
Flx ] - * X(f)

« X( ) does not contain any impulses at the origin

278



B} HILBERT TRANSFORM - ITS PROPERTIES

|

* Energy

* The energy content of a signal is equal to the energy
content of its Hilbert transform

- Proof
« Using Rayleigh's theorem of the Fourier transform,
E o @ a . X0 [df
W[des | s [ L |XO) [df

 Using the fact that |-jsgn(f)|2 = 1 except for f = 0, and
the fact that X(f) does not contain any impulses at the
origin completes the proof

EA.

279



.T]l HILBERT TRANSFORM - ITS PROPERTIES
* Orthogonality
 The signal x(f) and its Hilbert transform are orthogonal

- Proof

» Using Parseval's theorem of the Fourier transform, we
obtain

. X0 0dr . XN jsan(NX(N]-df
; |
o je | X0 |2df- j o X(Y) |2df- 0

* In the last step, we have used the fact that X(f) is
Hermitian; | X(f)|2 is even

280



Sampling and reconstruction



sampling “ Code “
Signal » Signal » Signal
" Continuous ~ D/A
Signal « "DSP <
3 !
, 1
1 L
| | | |
-T 0 T 2T t

x, - nT- - gnT- - x; nT-



Ml Sampling: Time Domain

« Many signals originate as continuous-
time signals, e.g. conventional music or
voice

« By sampling a continuous-time signal at
Isolated, equally-spaced points in time,

we obtain a sequence of nusmbtrsmpled
snt e SnT Ts

T—»w—

N

t

n- {.,-2,-1,0,1,2,.5 T :
Nk s(f)

I's Is the sampling period..  +
S samplea 1 5@+t nl” Sampled analog
- - waveform

impulse
train



Sampling: Frequency Domain

* Replicates spectrum of continuous-time signal
At offsets that are integer multiples of sampling frequency

* Fourier series of impulse train where ws =2 + fs

) I -2 ( ) i ( )
e e o nlt, - — - —cos(w f)c —cos(2w 1) -
& ae e - Ts T Ts
1
gt flo): T(t) . F * ft): 2ft)cos(w . ) 2fr)cos(2w L)
o Modulation by Modulation by cos(2
Example cos(ws t) ws t)

F(w) G(w)
UVETAVAVAYATARS

2-F o
max  2° fmax « 2Ws * Ws \ / Ws 2Ws




Bl Shannon Sampling Theorem

* A continuous-time signal x(f) with frequencies
no higher than fmax can be reconstructed from
its samples x[n] = x(n Ts) if the samples are
taken at a rate fs which is greater than 2 fmax.
Nyquist rate = 2 fmax
Nyquist frequency = fs/2.

* What happens if fs = 2fmax?
« Consider a sinusoid sin(2 * * fmax 1)

Use a sampling period of Ts = 1/fs = 1/2fmax.
Sketch: sinusoid with zeros at t = 0, 1/2fmax, 1/fmax, ...



Ml Shannon Sampling Theorem

Assumption In Practice
« Continuous-time signal
has no frequency content
above fmax

« Sampling time is exactly
the same between any two
samples

« Sequence of numbers
obtained by sampling is
represented in exact
precision

» Conversion of sequence to
continuous time is ideal




Bl \Why 44.1 kHz for Audio CDs?

“+ Sound is audible in 20 Hz to 20 kHz range:
fmax = 20 kHz and the Nyquist rate 2 fmax = 40 kHz
* What is the extra 10% of the bandwidth used?

Rolloff from passband to stopband in the magnitude
response of the anti-aliasing filter

* Okay, 44 kHz makes sense. Why 44.1 kHz?

At the time the choice was made, only recorders
capable of storing such high rates were VCRSs.

NTSC: 490 lines/frame, 3 samples/line, 30 frames/s =
44100 samples/s

PAL: 588 lines/frame, 3 samples/line, 25 frames/s =
44100 samples/s



= Sampling

* As sampling rate increases, sampled waveform
looks more and more like the original

« Many applications (e.g. communication
systems) care more about frequency content In
the waveform and not its shape

« Zero crossings: frequency content of a sinusoid
Distance between two zero crossings: one half period.

With the sampling theorem satisfied, sampled sinusoid
crosses zero at the right times even though its
waveform shape may be difficult to recognize



|| Aliasing

* Analog sinusoid ylnl = y(Ts n)
=Acos(2: (fo+Ifs)Tsn+ + )
X(f) = A cos(2- foi + - ) = Acos(2: hTsn+2- - fiTsn+ - )
. Samp|e at Ts = 1/fs =Acos(2- fbTsn+2 - In+-)
=Acos(2: folTsn+ + )
x[n] = x(Ts n) = = X[
Acos(2: - foTsn+ -
( o ) Here, fsTs=1

« Keeping the sampling
period same, sample
y() =Acos(2: (fo+Ifs)t +- )
where /is an integer

Since / is an integer,
cos(x + 2+ ) = cos(x)

 y[n] indistinguishable from
x[n]

Frequencies fo + [ fs for / -+ 0 are aliases of frequency fo



The Sampling Theorem

Impulse-Train Sampling

x® t
x* t° pt
x* 0° x
s t ° ’,—QA‘\\ / ¢ T X' 2T
p / »
N t* nT A S S5
,’ Vel Ll St \\

3T 2T -T 0 T 2T 3T 4T



* Sampling

zi LX (iw)* PGw)]

X(t)
X, 1)
X, Gw):
where p(f): -

(@)

Xp({)

* x1)p(?)

. (t* nT)



* Time domain:

X, 0 x@ - @ - x(ul): (&0 nT)




wl Frequency domain:

x(@ e X( jw)

1
p(t)  Fs' coa - ; (Periodic signal)

p(®: - r P(Gw)- ;.2- a: (W- kw): ;-w; (W kw)

xp(t)’ C P X (w) Z\{S . X(w - kw): l © X(we kw)

k... k...




X jw): X(jw)*P(jw)

T v ety ¥ 84t ot Tt 0 Ve

o NN/
2 .A,M




|

Sa;[:pling Theorem:

Let be a band-limited signal with '
then X tIS uniquely determined by its samples X JWr
If x® t° where
) 2
W WM w, - T

N

. 0, M‘W Y

xX* nft

2w ,, - Nyquisy Rate
( Minimum distortionless sampling frequency )
W ,, - NyquistFrequency

( Maximum distortionless sampled signal frequency )




The reconstruction of the signal

xXt*

A

H* jw* ——




Natural Sampling

-
<
~.
2

Difficult:
1 ILPF is unpractical;
2 narrow, large-amplitude pulses are difficult to generate and transmit.



Sampling with a Zero-Order Hold

x* t
Xt
xt epegy O a2
\// "-\\‘ /’,’4;/_\4 .

2T 3T

4T



HO Gw): e

w20 2sin(wWT /2)-
——



- Reconstruction
pst .« .t nl: Filter

I /.
[ !
p l‘ H
Xt 1 :' 0 4 : § hr . t._:_’ r !
|
Zero-Order S :
Hold
p° Lt . t* nT
n: e e '
. g !
p'x | Ix® ¢
x® t ‘|= LPF :—.
I I JWT /2 .
Impulse-Train s e ! Hijw)* ° H(jw)
Sampling 2sin(wT /2)

W



eMI2H (]W)
H,(jw)- _ZSI_H(WT/T)

W




Reconstruction

Band-limited interpolation

pl . x,,t. W W
x* t.® ~ Ho ]Wo C O

0 x Oy o L Sif‘(‘t"’f)

. x(nT): (¢ 1) *h(7)

7sinfw: ¢ nT- ]
.+ nI

o x(nDh(t: nT)

ne -

. x(nT)

ne



Original CT Signal

After sampling

After passing LPF

The LPF
smoothes out
shape and fill in

the gaps



Zero-order hold p* ot

Original CT Signal

Y

After sampling

After passing
zero-order hold




Zero-Order Hold

H,Gw) e 7 ZSi”(VVVVT 2w
. e jWT/ZH(fW) Zero-Order Hold
H”(/W) _ZW](WI_ /2) Recover Filter

W






Sampling theory

Spectrum is
replicated an
infinite number of

times

J(x) F(s)



Reconstruction theory

sinc

J(x) F(s)



Sampling at the Nyquist rate

L] - o o o £ e 8 20

J(x) F(s)



, Reconstruction at the Nyquist rate

J(X) F(s)



Sampling below the Nyquist rate

J(x) F(s)



Reconstruction below the Nyquist rate

J(x) F(s)



Reconstruction error

Original Signal

Undersampled

Reconstruction



Reconstruction with a triangle function

J(x) F(s)



Reconstruction error

Original Signal

Triangle

Reconstruction



, Reconstruction with a rectangle function

J(x) F(s)



Reconstruction error

Original Signal

Rectangle

Reconstruction



Sampling a rectangle

J(x) F(s)




Reconstructing a rectangle (jaggies)

L] - o o o £ e 8 20

J(x) F(s)



N Sampling and reconstruction

Aliasing is caused by
- Sampling below the Nyquist rate,
- Improper reconstruction, or
- Both

We can distinguish between
- Aliasing of fundamentals (demo)
- Aliasing of harmonics (jaggies)



L Time-Domain System Analysis



n Impulse Response

Let a system be described by

aygg()+r e yg(t ) +aoy(r) =x(¢)
and let the excitation be a unit impulse at time # = 0. Then the
zero-state response y is the impulse response h.

a2 h¢g¢(r)+ ashg(z ) + aoh(z ) =d (¢)
Since the impulse occurs at time ¢ = 0 and nothing has excited
the system before that time, the impulse response before time
t = 0 Is zero (because this Is a causal system). After time =10
the impulse has occurred and gone away. Therefore there is no
longer an excitation and the impulse response is the homogeneous
solution of the differential equation.



H Impulse Response
Jz Ngg(s) + aihg (¢) +aoh(r)=d (¢)

What happens at time, = 0? The equation must be satisfied at
all times. So the left side of the equation must be a unit impulse.
We already know that the left side is zero before time =0
because the system has never been excited. \WWe know that the
left side is zero after time ¢ = 0 because it is the solution of the
homogeneous equation whose right side is zero. These two facts
are both consistent with an impulse. The impulse response might
have in it an impulse or derivatives of an impulse since all of
these occur only at time, = 0. What the impulse response does

have in it depends on the form of the differential equation.



Impulse Response

Continuous-time LTI systems are described by differential
equations of the general form,

O () +amyen(f)+ +ar  ye(t) +aoy(t)
OV (@) +bmaXma)(£)+ +b1 x¢(z) + box(r)
For all times, ¢ <0:
If the excitation x (¢ ) is an impulse, then for all time ¢ < 0
it is zero. The response y(¢ ) is zero before time 1 =0
because there has never been an excitation before that time.



i Impulse Response

For all time ¢ > O:
The excitation Is zero. The response is the homogeneous
solution of the differential equation.

Attimer=0:
The excitation is an impulse. In general it would be possible
for the response to contain an impulse plus derivatives of an
Impulse because these all occur at time # = 0 and are zero
before and after that time. Whether or not the response contains
an impulse or derivatives of an impulse at time ¢ = 0 depends
on the form of the differential equation

O (D) +amyen(t)++ +ar  ye(t) + a0 y(r)
) (£)+bmaXma)(t)++ +b1  x¢(t) + box(t)



Impulse Response

O () +amyey()+: +ar  ye(t) +aoy(t)
O () +bmaxe(f)+ +b1 x¢(r) + box(¢)
Casel: m<n
If the response contained an impulse at time ¢ = 0 then
the nth derivative of the response would contain the nth
derivative of an impulse. Since the excitation contains
only the mth derivative of an impulse and m < n, the
differential equation cannot be satisfied at time ¢ = 0.
Therefore the response cannot contain an impulse or any
derivatives of an impulse.



Impulse Response

O () +amyw()+s +ar  ye(t) +aoy(t)
OV () +buwaXma(t)++ +b1 x¢(t) + bo x(¢ )

Case2: m=n

In this case the highest derivative of the excitation and

response are the same and the response could contain an

Impulse at time 7 = 0 but no derivatives of an impulse.
Case 3. m>n

In this case, the response could contain an impulse at

time ¢ = 0 plus derivatives of an impulse up to the

(m - n)th derivative.

Case 3 is rare In the analysis of practical systems.



| Impulse Response

Example
Let a system be described by y¢(z ) + 3y(z ) =x(¢ ). If the excitation

X is an impulse we have h¢(s ) + 3h(z ) =d (¢ ). We know that
h(z ) = 0 for r < 0 and that h(z ) is the homogeneous solution for
t > 0 which is h(1)=Ke-. There are more derivatives of y than
of X. Therefore the impulse response cannot contain an impulse.

So the impulse response is h(z ) = Ke-s u(z ).



ﬁ Impulse Response
Example

To find the constant K integrate h'(r)+3h(z)=J(7) over the

infinitesimal range 0™ to 0.

jh'(t)dw Bj:h(t) = OJ' o(2)

?(0+)—¥1(0_)+3IK€_% u(z)dr = 1:1(0“)—11(0‘)

Lo =0 3 4 -0

K+3K[i}o =K+3K[(—1/3)—(—1/3)]=1

\a

=0



Impulse Response

!

Example
To check the solution, put it into the differential equation to see
whether 1t 15 satisfied.
%(e‘st u (z‘)) +3e™ u(t)=0(r)
e 0(1)-3e u(t)+3e u(t)=0(r)
e o(t)=0(t)=>(t)=6(t) Check.

— —
=" 3(¢)=a{t)



Impulse Response

Example

Let a system be described by 4y'(#)+3y(7)=x'(7). The homogeneous
solution is v, (#) = Ke™" and that is the form of the impulse response
for £ > 0. The number of v derivatives and the number of X derivatives
are the same. Therefore the impulse response has an impulse 1n 1t and

its form is h(r)=Ke ™" u(r)+K,5(r). Integrate between 0~ and 0.

" 5 ;
4[0'(r)de+3[h(r)de= [ &' (t)dr
0 0 0

e et S S d S )
=K =( =0 =)

(
4 h(u*)-h(o)+1x2,~[<”((")-"‘(“)]

=] =0

) »=5(07)-5(07)
43 j‘ Ke—_%r 4 (,)d, 3 3K‘; |:u(()+ )—ll(()- ):|
0

—
L =0



Impulse Response

Example
4K +3K, =0

Now integrate again over the same infinitesimal interval.

i

4] jh' dMHBI IKe Al )er+3j IK S(A)dAdt = j j(s'
4th(t)dt— 4KI(1— e Yu(t)dt +3K, Iu(r)dt: _[a(t)dt
| , O PR A

=K; —O =l =]

4K, =1>K,=1/4—>4K+3/4=0—>K=-3/16

h(f)=(-3/16)e " u(t)+(1/4)5(t)

dAdt



|| Impulse Response

Example h(z) = (-3/16)ean u(z ) +(1/4)d (¢)
The original differential equation is 4h¢(7)+ 3h(7)= d¢(z).

Substituting the solution we get

d X
}4 _é(_\?’ / 16)8—31/4 u(t ) +(1 / 4)d (t )U u
e 0% =d¢(r)
:I:+3 " l\J .I.
| e Gp
148(-3/16)e-siad (£)+ (9/64)e-34a u(z)+ (]_/4)d ¢(l‘ )Hlu
| . y =d¢(7)
S +3 g ; T

~(3/ 4)e-suad (£)+ (9 /16)e-3ua u(2)+de¢(z)- (9 /16)e-aua u(z)+ (3/ 4)d (2)= dé(z)
d¢(r) =d ¢(z) Check.



al Transmission Through a Linear System

[nput signal Output signal
Time-domain x(1) LTI system y(t) = h(t) % x(t)
> h(t) >
Frequency-domain  X(f) H(f) Y(f)=H():-X({f)

H(f): Transfer function/frequency response

Signal transmission through a linear time-invariant system.



Dl!lortionless transmission:
a signal to pass without distortion
delayed ouput retains the waveform

Linear time invariant system frequency response for distortionless transmission.



T

Determine the transfer function H(f),

+ O
e(1) —T— C=10"vn
O, — — —

| H(f) | |
0.707 \
' '
a 3” ,}ll
~ () —p
~
~
~ 0 (w)=-tan"" (w/a)
~
~
n ~
S eerierenenn P s e B PR O A >
2 ~
N W
(h) a
Lr) —
d\J 7
() [ a ®

(C)

II;..;)J- jlﬂ o

g
Eakid:

and td(f).
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[
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Y. T e weliea [Pl 8 ae
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eliahy, £l i,

R0 vedmon [Pl 5 e

¢ s £t vareans. [ ] 2 e
riﬁ{?’m_ml r.uxy R );‘\1 pj :

s

What is the requirement on the bandwidth of
g(t) if amplitude variation within 2% and time
delay variation within 5% are tolerable?

s
DM - ) e QL9208
J' aa” -0 l

){t‘.,, “ \U- ne

€ ] ﬂl’t.‘fﬂi‘&
5" SR

2‘}:‘3' Mo e ol K
e R ety ‘

(a) Simple RC filter. (b) Its frequency response and time delay.



.!al filters: allow distortionless transmission of a certain band of frequencies
and suppress all the remaining frequencies.

o h
x

- ‘| . [ \
hd:aj' o “il H'"‘”‘B

[V - o . otna R RS :. s el e w)i:
: ‘!I ey Wi "'ﬂ!‘ = P A FlE -y
iy | '

‘II(’)I hir)

== ‘ ZN Y i

- B NS S
- —

0,(f) =-2rfi, i

(a) (b)

(a) Ideal low-pass filter frequency response and (b) its impulse response.



.0,(f)
_a |H(P) |
(a)
0 B f>
B,
B |H(f)|
~ — ™ ~ (b)
~Jo 0 /U >

ldeal high-pass and bandpass filter frequency résponses.

Paley-Wiener criterion

a7 i

a (> ity P
B g - B AW




a physically realizable system h(t) must be causal
=0 for t<O

A hir)

h(t)

/\ , N,
0\/ \/ [d\/ v{—»

(b)

Approximate realization of an ideal low-pass filter by truncating its impulse response.

RbE) =« Bl Jre ]




|

IH(T,I')I 0.91
0.8+

P S—.

0.61

051

0.41

0.3t

0.2+

0.11

. g

The half-power bandwidth
« The bandwidth over which

the amplitude response
remains constant within 3dB.
cut-off frequency

0(f)

| .!'!':l!llv iz:J:r "E' " ; &

h(r)

Butterworth filter characteristics.

Butterworth n = 4

Ideal

-~

oo

#

\ /10 12~~
4

2w Bt—>




tal Filters

Sampling, quantizing, and coding

Analog input Digital input Digital ouput Analog output
g P g outp
x|k - s )
x(1) Analog-to- L] Digital filter yIk] Digital-to- ()
digital implemented by analog
e ———» e o
(A/D) digital signal processor (D/A)
converter (DSP) or computer converter

Basic diagram of a digital filter in practical applications.



.'ear Distortion

Magnitude distortion
Phase Distortion: Spreading/dispersion |H(f)|

TLFD - lun xu - ehcnon P oy P

L E :ﬁ'.FEj"ﬁl;'z'i-?'Ej'ﬁ' il 3-lum £ 3»* -4 B e P

FRIFD = g Ber APmTSp |  Doapms A fee AR

ra‘)\‘\ . e g vy . X ;
\.:"5 ,}u IHJIJ }’\\gh les AP i » ps AP P )lf‘j $f Ry WY s §Poif e )
s
plich - gl - e dt . ||ﬁ¢‘*l':£- SRR D R E R R

Pulse is dispersed when it passes through a system that is not distortionless.



ortion Caused by

X(f)

nnel Nonlinearities

1000

(a)

I 5 T T A
L iy ,rgg'*_;.',j' N -mlﬂg?‘h}v_j'-

/

0.316

(b)

1.316

1000

1.316

1000

(d)

Signal distortion caused by nonlinear operation: (a) desired (input) signal spectrum;
(b) spectrum of the unwanted signal (distortion) in the received signal; (c) spectrum of the received si
(d) spectrum of the received signal after low-pass filtering.

Distortion term spectrum



ipath Effects

—»1  Delay 1,
Transmitted _
signal ——— Rcccwcd
signal
(a) — a —»— Delay 1, + At
'l'll'lli':}llr";(l - f;'f;' .\'jh‘:'.'l-'-ﬂ ” rb(‘m .x-}t‘\:;il"ﬂ : A"";"‘l:“'n
|H(f)]
230
\\\ :
b ~ \:\ [ —
(b) -
0\\:’k“\
\

Multipath transmission.



!
llal Energy: Parseval’s Theorem

54 H(f) —> le— Af
P i I+ ‘
g | lnPass | WGP B
5 o i . (a)
_ ~fo fo J—
Energy Spectral Density
(b) _1116(fo) & aimm - | Y(7)l
- | e T
— | ~—
i
—fo 0 Jo f—»

Interpretation of the energy spectral density of a signal.



ential Bandwidth: the energy content of the components of frequeicies
ater than B Hz is negligible.

G(f)

| €

Figure Estimating the essential bandwidth of a signal.



=1
g(r)

- l

_’._

i~

(a)

V()= |G

Find the essential bandwidth where it
contains at least 90% of the pulse energy.
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mrgy of Modulated Signals

V,(f)
K
0 f —>
(a)
.E:":i‘rgi '-}:F-I" : A “'”m Y QI[RI'I: "'5:-[-:’:;_;- L ?-FI'BI'I
W;‘(./ )

~fo 0 fo f—

(b) 2B

Energy spectral densities of (a) modulating and (b) modulated signals.



.I Determine the ESD of b = eg "nf)

Autocorrelation Function

. - 'r' g . N ‘.~ . i
G B l[] hg-g{_i.j;(-g';;i,,j;- - w ol g(1)

e > ()

0

(b)

Figure Computation of the time autocorrelation function.



.I Signal Power 2(1)

i g e ,6‘-;!;\ \_/ T 4
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Limiting process in derivation of PSD.

Time Autocorrelation Function of Power
Signals

PSD of Modulated Signals
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DT Unit-Irmpulse Response

. Consider the DT SISO system:

X[l’l] . System " y[n]

« If the input signal is x[#] = - [r]and the
system has no energy at n* 0, the

0 nl - hln IS called
th f the system

* [n] > System > h[n]




onsider the system described by

yin] = ayln - 1] - bx[n]
* |lts impulse response can be found to be
(v dp, n-01,2;

h[n] o o
.O’ n o 1,. 2’. 3,.
Input = o[n] Output = A[n] t
0 0

= System >




ting Signals lin TErs @f

S'rnifted and Scaled Irmpulses

* Let x[n] be an arbitrary input signal to a
DT LTI system

* Suppose that x[n] - Oforn- - 1, 2,
* This signal can be represented as

x[n]* x[0]* [n]- x[1]* [n- 1]-x[2]- [n- 2]- -

xi]* [n- i, n-012-
i+ 0



Exploiting Time=Invariance

and Linearity

Input = d[n — i] OQutput = f[n — i}

1

— System >

yln]+ - xilalne i, n- 0

i- 0



The Convolution Surmn

. iili !ii‘lil”ii iMi’umation IS called the

y[n]: - xilhln i
. O . o o .

IS called the

convelulion represearnlalon of (e Syiiem
 Remark: a DT LTI system is completely
described by its impulse response h[n]



agrarm r{r-‘,r_)l’

DI LITS

the complete description of a DT LTI
system, we write

x|n] 1 hln] - yln]




The Convolution Surm
for Noncausal Signals

* Then, their convolution is expressed by
the two-sided series

(R M R



. Convolution orf Two

tangular Pulses
U X1/ ] VI

to the rectangular pulse p|[n] (causal
sighal) depicted below

)5 LR S il o7 BRI ey SRR SRR



The rolded Pulse

« The signal v[* i]is equal to the pulse
pl/] folded about the vertical axis




xlilvln — 1] ¢




x[i] vin —i] 4

(a) (b)

xlilvin =i A




10




Convolution Swifm

x[n]- (V[n] win]) - v n]) - winj
« (Gommuotativity

x[n]* vln] - vin]- x[n]

e D)oLt \,'l\y wirit. cadgioon

x[n]= (n] = win]) “x[n v n]- x[n]* win]



S 1Y<2%27-Y4 Y4 . o 1 |
' SNIFtproperty. ,v[;n] - v[n* ¢]

“wln]: x[n vn]




Example: Computing Convolution

with Matlao

* Consider the DT LTI system

x|n] hn] - yln]

* impulse response:

hln]* sin(0.5n), n- O
* input signal:

x[n] © sin(0.2n), n - O



Example: Cormputing Convolution

with Matlap - Contld

h[n]- sin(051), n- O . [ lr 1[1 | l ]

x[n] - sin(0.2n), n- 0 » IH ‘hr‘J II “ll,(.ll




cxample: Cormputing Convolutiomn

wWith Matlap — Contld
 Matlab code:
n* 01- 40

n=0:40;

x=sin(0.2*n);
h=sin(0.5*n);
y=conv(x,h);

stem(n,y(1:length(n)))



Example: Computing Convolution

with Matlap - Contid

yln] = x|n]* hln]




CT Unit=Impulse Response

I Consider the CT SISO system:

.X'(f) | System . y(t)

* If the input signalisx(f) -+ * (¢) and the
system has no energy ats 0 "~ the

0 . IS called
th f the system

(t) . System . h (t)




exploiting Time-Invariance

* Let x[n] be an arbitrary input signal with

x(¢) © O,fort: 0

» Using thepEiMyib[eueals=ias - (1), we
may write

x(2)° ex(t ) (@t =), t O

* ExploitinCRsiasERllt == gle=00 |S

(t' . ) J  System =h(t- . )




exploiting Time-Invariance

Input = o (1)

(1)

Ouipul = A(r) 4

Y

Input=9(r—4) 4

System

Y

0

Output = A(r — 4) 4

System -




EXPIoItinG Linearity

 ExploitingRlisE==1yi | S

(1) e x(* )h(tr - )d-, t O

-
* If the integrand x(- )a(z -+ - Yoes not
contain an impulse I+ - Oed at , the
lower limit of the integral can be taken to
be 0,l.e.,
y(@©):  ex(t ) c ), t 0
0



v() ex(- DA - ), 0

convolulior: reoreseatalion of the System
* Remark: a CT LTI system is completely
described by its impulse response h(t)



Block Diagrarn Representation

of C1T LTI Systams

the complete description of a CT LTI
system, we write

x(?) . h(D) 40




. Analytical Computation of

Cornvolurlon Integra |

p(f) 1s the rectangular pulse depicted in
figure x(@) © (D) - plo),

p() 1




Example - Contdd

* [n order to compute the convolution
integral

y() ex(- )h( - )d-, t 0
0

we have to consider four cases:



Example - Eontdd

e Case 1+ 0




Example - Eontdd

eCase20: ¢+ T

h(t e o x(.)
t~ T 0 ¢ T
t

yit)- * d t



Example - Eontdd

eCase3: 0t T T « T+ ¢t+ 2T

x(* ) h(t - - )




Example - Eontdd

e Case 4: T t+ T . 2T ¢

x(* ) Wt + )
0 I ¢t T t

). 0



exarmple - Cont@

v () - x(@0) - k()




Convolution Integral

x(@) © ) - w(@) - (@) - v() - w()
Jonmmutativity

x(7) = v - (D) - x()

+ IDErioutwitywir t. cacaition

x(@) = () - w(@) - x(0) - v - x() - wlg



Properti
Convolution In

then “w(e) o x(0) 0 v(o)




Properties or the
gl

Convolution Integral - Cont'd

¢ LD PR TR D FO |"ly he Signal X(t) 1S

differentiable, t It IS
d dx t)
u e N vi): . t)
dt x 1) ) dt '

* If both x(f) and v(f) are differentiable,
then it is also

d* dxt) dvi
dl‘_z .Xt) Vt) . ” ”




Propéertiestof the
Convolatioreintedgrali ¢ Cont'd

J
()

agratiom property:
{

Cxt B . x(* )d-

Y v )

then

(x- v)C D) - ¥ 00 v@) - x@) ¥ O



rRepresentation of @ CT LTI Systeam
y

| In Termms of The Unit-Steb Response

* Let g(f) be the response of a system
with impulse response h(f) whenx(?) *©  u(¢)
with no initial energy at time¢* 0 , i.e.,

u(?)  h(D) - (1)

 Therefore, it is

gt) = h(x) - u()



Jf e Umr StEDp

— (.‘..,'| ‘t d
* Differentiating both sides
d dh d
¢ A cut) hi) 9
dt dt dt
* Recalling that
Wl oy and @) - h() -
dt
It s d ¢
gdt) .y or g+ * h(c )d
l

0

(2)



Definitions of the components/Keywords:

Convolution of two signals:

Let x(t) and h(t) are two continuous signals to be convolved.

Ny fea WO e
S I T B
-n av ’:ﬂ’_!_l Ill‘d"_ '«'1‘.{'.

which means

where * is the variable of integration.

]
|
|



Master Layout

Signals taken to convolve

x*

. * -
> >

ft) 4

22 22 t 1 t

Output of the

“V (t) / convolution




g(f)=-t+1

21

—
v

Instruction for the animator

Text to be displayed in the working area (DT)

» The first point in DT has to appear
before the figures.

» Then the blue figure has to appear.
« After that the red figure has to appear.

» After the figures, the next point in DT
has to appear.

* f(t) and g(t) are the two continuous signals to be convolved.

= 2 R T (A R '\':._-'-‘l
oy oy R TR

where * is a dummy variable.




L

"\

N

g(t--)

&

2 -1 2
Fig. a

v

v

Fig. b

-

Instruction for the animator

Text to be displayed in the working area (DT)

* The figure in blue in fig. a has to
appear then its label should appear.

» Then the red figure has to appear.

» After that the labeling of red figure
has to appear.

« In parallel to the fig. the text in DT has
to appear.

* First two sentences in DT has to
appear with fig. a

. I_he tI)ast sentence should appear with
ig. b.

* The signal f(* * ) is shown

» The reversed version of g(* ) i.e., g(-*

is shown

» The shifted version of g(-* * * ie., g(t-* ) is shown




Ste p 3 = | Calculation of y(t) in five stages
| |

Stage -1: t<-2

g(t--)

v

v

f- )

Instruction for the animator

Text to be displayed in the working area (DT)

* The figure in blue has to appear then
its label should appear.

» Then the red figure has to appear.

» After that the labeling of red figure
has to appear.

« In parallel to the fig. the text in DT has
to appear.

« After the figures, the 3, 4 lines in DT
should appear.

* The signal f(* * ) is shown

» The reversal and shifted version of g(t) i.e., g(t-*
» Two functions do not overlap

» Area under the product of the functions is zero

is shown




Step 4:

Stage -1l -2 s t<-1

A
2
g(t-. ) f(. )
\ i /
- :/ T >
l+t-2t 2
Instruction for the animator Text to be displayed in the working area (DT)
» The figure in blue has to appear then - Th i | f(* * is sh
its label should appear. e signal f( ) is shown
- Then the red figure has to appear. » The reversal and shifted version of g(t) i.e., g(t-* ° ° is shown
* After that the labeling of red figure «Partof g(t-* * * overlaps partof f(* * )

has to appear.

) ) » Area under the product
« In parallel to the fig. the text in DT has

to appear.

« After the figures, the 3, 4 lines in DT
should appear.




Step 5:

Stage -ll: -1 s t<?2

no

g(t--) f- )

)

Instruction for the animator

Text to be displayed in the working area (DT)

* The figure in blue has to appear then
its label should appear.

» Then the red figure has to appear.

» After that the labeling of red figure
has to appear.

« In parallel to the fig. the text in DT has
to appear.

« After the figures, the 3, 4 lines in DT
should appear.

* The signal f(* * ) is shown

» The reversal and shifted version of g(t) i.e., g(t-* ° ° is shown

° g(t_. .

» Area under the product

* completely overlaps f(* * )




Step 6:

Stage -IV: 2 <t<3

D%

{

Instruction for the animator

Text to be displayed in the working area (DT)

* The figure in blue has to appear then
its label should appear.

» Then the red figure has to appear.

» After that the labeling of red figure
has to appear.

« In parallel to the fig. the text in DT has
to appear.

« After the figures, the 3, 4 lines in DT
should appear.

* The signal f(* * ) is shown
» The reversal and shifted version of g(t) i.e., g(t-* °

e Part of g(t-* * * overlaps partof f(* * )

» Area under the product

is shown




Step 7:

Stage -V:t=3

'y
f(- )
2
/ g(t-. )
T1
< 1 >
-2 2 -1+ttt
Instruction for the animator Text to be displayed in the working area (DT)
» The figure in blue has to appear then - Th i | f(* * is sh
its label should appear. e signal f( ) is shown
- Then the red figure has to appear. » The reversal and shifted version of g(t) i.e., g(t-* ° ° is shown
« After that the labeling of red figure * Two functions do not overlap

has to appear. » Area under the product of the functions is zero

« In parallel to the fig. the text in DT has
to appear.

« After the figures, the 3, 4 lines in DT
should appear.




Step 8! Output of Convolution
]

y(t)
I’y
1
« - b
| I l f
-2 0 2 3
Instruction for the animator Text to be displayed in the working area (DT)
» The figure in green has to appear then » The signal y(t) is shown
its label should appear.
+ In parallel to the fig. the text in DT has
to appear.
. o 0 forte -+ 2
« After the figure, the equations in DT
should appear . . 2
-t 2t for- 2 ¢
: for- 1- ¢
yo) gl -1
* 2
t= 6t 9  for2- ¢ 3
0 for - 3
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Correlation and Auto-
Correlation of Signals



| Obijectives

» Develop an intuitive understanding of the cross-
correlation of two signals.

 Define the meaning of the auto-correlation of a signal.

* Develop a method to calculate the cross-correlation
and auto-correlation of signals.

* Demonstrate the relationship between auto-correlation
and signal power.

* Demonstrate how to detect periodicities in noisy
signals using auto-correlation techniques.

* Demonstrate the application of cross-correlation to
sonar or radar ranging



] Correlation

« Correlation addresses the question: “to what
degree is signal A similar to signal B.”

* An intuitive answer can be developed by
comparing deterministic signals with stochastic
signals.

- Deterministic = a predictable signal equivalent to
that produced by a mathematical function

- Stochastic = an unpredictable signal equivalent to
that produced by a random process



Three Signals

>>n=0:23;

>> A=[ones(1,4),zeros(1,8),0nes(1,4),zeros(1,8)];

>> subplot (3,1,1),stem(n,A);axis([0 25 0 1.5]);title('Signal A")

>> Bl=randn(size(A)); %The signal B1 is Gaussian noise with the same length as A
>> subplot(3,1,2),stem(n,B1);axis([0 25 -3 3]);title('Signal B1')

>> B2=A;

>> subplot(3,1,3),stem(n,B2); axis([0 25 0 1.5]);title('Signal B2");xlabel('Sample’)

Signal A
1.5 .
13 Q Q Q
aiil |
By inspection, A is “correlated” % 00600 o008 o0o—
with B2, but B1 is | _ Signal B
“uncorrelated” with both A and 1 o 90 $a%9
. . . - U & T E
B2. This is an intuitive and o @ eg TR > ¢ _
visual definition of “correlation.” 0 5 10 15 20 25
Signal B2
1.5 e
1Y NERY
0.5
0 -—0-—-0---0———1—1—0—-0-0-0-0-6-0—€
0 5 10 15 20 25



Ml  Quantitative Correlation

« We seek a quantitative and algorithmic way of
assessing correlation

* A possibility is to multiple signals sample-by-
sample and average the results. This would
give a relatively large positive value for
Identical signals and a near zero value for two
random signals.

N

1 M
SRR U0

n

no



Ml Simple Cross-Correlation

« Taking the previous signals, A,
Bl(random), and B2 (identical to A):

>> A*B1'/length(A)
ans = _
The small numerical
-0.0047 result with A and B1
>S A*BZ'/Iength(A) suggests those signgls
are uncorrelated while A
ans = and B2 are correlated.

0.3333



Simple Cross-Correlation of
Random Signals

>> n=0:100;
>> noisel=randn(size(n));
>> noise2=randn(size(n));
>> noisel*noise2'/length(noisel)
ans =
0.0893

Are the two signals
correlated?

With high probability, the result is expected to be
< #2/AN = £0.1990
for two random (uncorrelated) signals

We would conclude these two signals are uncorrelated.




The Flaw in Simple Cross-
Correlation

Original Signal A

1
0.5}
O0 S——6o0 66— 5685066
5 10 15 20 25
Sample-Shifted Signal
1 T T
05}
o0 S L L e
5 10 15 20 25

In this case, the simple cross-correlation would be zero
despite the fact the two signals are obviously “correlated.”



Sample-Shifted Cross-
Correlation

Shift the signals k steps with respect to one another and calculate
ri2(k).

All possible k shifts would produce a vector of values, the “full”
cross-correlation.

The process is performed in MATLAB by the command xcorr

xcorr is equivalent to conv (convolution) with one of the signals
taken in reverse order.

1 N- 1
rlz(k)' ﬁ Oxl[n]x[ﬂ. k]

ne



Full Cross-Correlation

>> A=[ones(1,4),zeros(1,8),0nes(1,4),zeros(1,8)];

>> A2=filter([0,0,0,0,0,1],1,A);

>> [acor,lags]=xcorr(A,A2);

>> subplot(3,1,1),stem(A); title('Original Signal A")

>> subplot(3,1,2),stem(A2); title('Sample Shifted Signal A2")

>> subplot(3,1,3),stem(lags,acor/length(A)),title('Full Cross-Correlation of A and A2")

Original Signal A

1
Signal A2 shifted s
to the left by 5
0 et D e e et
steps makes the 0 5 10 15 20 25
. . . Sample Shifted Signal A2
signals identical 1 o oo i
and ri2 = 0.333 os
0 — —_— S—o—S
0 5 10 15 20 25
Full Cross-Correlation of A and A2
0.4
0.2 R i;,::".: . '--‘!::‘ o :
0 ‘:TM:‘ St :T - :'i';.:.,_._ '_‘-"_*:7’-::-?‘3 M'_ —

25 20 -15 -10 -5 0 5 10 15 20 25



Full Cross-Correlation of Two
* Random Signals

>> N=1:100;

>> nl=randn(size(N));

>> n2=randn(size(N));

>> [acor,lags]=xcorr(nl,n2);
>> stem(lags,acor/length(nl));

0.15
0.1}
The CrOSS' 0.05 - {:; | Il ollo
correlation is ? 116 )
¥
random and
shows no peak, i Al

which implies no
correlation

0.1t

-0.15¢

_O ) 2 I I | I I 1 | I
-100 -80 -60 -40 -20 0 20 40 60 80 100



] Auto-Correlation

« The cross-correlation of a signal with
itself is called the auto-correlation

1 N1
nik) —- xl[n]x[n. k]
N n- 0

* The “zero-lag” auto-correlation is the
same as the mean-square signal power.

1 M1 1N

D) Nn Ox[n]x[{z] ' N [n]



Auto-Correlation of a Random
Signal

>> n=0:50;

>> N=randn(size(n));

>> [rNN,k]=xcorr(N,N);

>> stem(k,rNN/length(N));title('Auto-correlation of a Random Signal')

Auto-correlation of a Random Signal

Mathematically, the 06
auto-correlation of a

random signal is like ~ °*
the impulse function 05
o, e, by h:‘[t ol |IIFP]4 H ' | I ﬂJ mj B Tah
) [ & | 1 &b .S’y:f- 3 q“( [ -;f::J[Z: 3} l & [0 -.-f-." "w 5
7 REEE " & | 1 L = s
-0.2

) -50 -40 -30 -20  -10 0 10 20 30 40 50



Auto-Correlation of a Sinusoid

>>n=0:99;

>> omega=2*pi*100/1000;

>> d1000=sin(omega*n);

>> [acor_d1000,k]=xcorr(d1000,d1000);
>> plot(k,acor_d1000/length(d1000));

>> title('Auto-correlation of signal d1000")

Auto-correlation of signal d1000

0.5

o4 | |’| ll 1\1 \
The auto- | | '|" | | H | I’ "'| | s
correlation vector 02 e (o |1 | | | || i
has the same S |"| L l‘ | | i ,'11
frequency OKWJH\ﬂlvyH‘y ’ “\‘H#”hhHU
components as oaf V) ;,' I ‘! | ‘\ (W
the original signal o2l i I gy

_Z'j- l \' \'| | H '\| 4' )

| ||

05 L L " " L L L
-100 -80 -60 -40 -20 0 20 40 60 80 100



ldentifying a Sinusoidal Signal
Masked by Noise

>> n=0:1999;

>> omega=2*pi*100/1000;

>> d=sin(omega*n);

>> d3n=d+3*randn(size(d)); % The sinusoid is contaminated with 3X noise
>> d5n=d+5*randn(size(d)); % The sinusoid is contaminated with 5X noise.
>> subplot(3,1,1),plot(d(1:100)),title('Clean Signal’)

>> subplot(3,1,2),plot(d3n(1:100)),title('3X Noisy Signal’), axis([0,100,-15,15])
>> subplot(3,1,3),plot(d5n(1:100)),title('5X Noisy Signal’), axis([0,100,-15,15])

Clean Signal

d |/ \|| | Il', Il.' I.'.l ltll '|.| Ill' Iull 1‘|| I‘.I 'I.' 1]] I)l l"' ‘lll l'.l I,' ’||‘ |
Itis very difficult 110 20 w0 40 5 60 70 80 80 100
to “See” the 3X Noisy Signal
. . . 10| $ v T T T T
sinusoid in the T T W e
noisy signals .

0 10 20 30 40 50 60 70 80 90 100
5X Noisy Signal

10h | \
|l Av) . |'| ’[ A N\ A 1\ |\ \ A
L AN VAT, I\ | f || v ) | || M "l‘ "u | N
Of! | |'|I AN = v WA V AN WIERY
L/ | | Vv \ L" \/ Y || ¥ v |/ | v\
-10 2 Wi N ‘ G




ldentifying a Sinusoidal Signal
Masked by Noise (Normal Spectra)

>>n=0:1999;

>> omega=2*pi*100/1000;

>> d=sin(omega*n);

>> d3n=d+3*randn(size(d)); % The sinusoid is contaminated with 3X noise
>> d5n=d+5*randn(size(d)); % The sinusoid is contaminated with 5X noise.
>> subplot(2,1,1),fft_plot(d3n,1000);title('200 Hz 3X Noise")

>> subplot(2,1,2),fft_plot(d5n,1000);title('200 Hz 5X Noise")

100 Hz 3X Noise

05

Normal spectra
of a sinusoid OMMMMMWMWWMWMMW
mas ked by n OISE 100 150 200 250 300 350 400 450 500

High noise power
makes detection
less certain

100 Hz 5X Noise

MWW b

0 / .
0 50 100 150 200 250 300 350 400 450 500




ldentifying a Sinusoidal Signal Masked by
Noise ( Auto-correlation Spectra)

>> acor3n=xcorr(d3n,d3n);

>> acorbn=xcorr(d5n,d5n);

>> subplot(2,1,1),fft_plot(d3n,1000);title(*100 Hz, 3X Noise, Signhal Spectrum’)

>> subplot(2,1,2),fft_plot(acor3n,1000);title('200 Hz, 3X Noise, Auto-correlation Spectrum’)
>> figure, subplot(2,1,1),fft_plot(d5n,1000);title('200 Hz, 5X Noise, Signal Spectrum’)

>> subplot(2,1,2),fft_plot(acor5n,1000);title('200 Hz, 5X Noise, Auto-correlation Spectrum’)

100 Hz, 5X Noise, Signal Spectrum

1

The auto-
correlation of a 05 .
noisy signal WW WMWW‘ | WMW
provides greater s AR W | W
S/ N |n detectlng O0 50 100 150 200 i'SZO 300 350 400 450 500
dominant frequency o 100 Hz, 5X Noise, Auto-correlaton Spectu
components
compared to a 400 |
normal FFT

200

L R R, e ek aasebol il - . -t el e - ey - v e -
0 50 100 150 200 250 300 350 400 450 500
Hz



Detecting Periodicities in Noisy
Data: Annual Sunspot Data

>> |oad wolfer_numbers
>> year=sunspots(:,1);
>> spots=sunspots(:,2);

>> stem(year,spots);title('Wolfer Sunspot Numbers');xlabel('Year")

Wolfer Sunspot Numbers
160 T v

140}
120} b ¢
100

80 |f
60

404, o
P

JibLiikl
P 'hﬁ?t Rl

l Tl el ‘?J y'&

P770 1780 1790 1800 1810 1820 1830 1840 1850 1860 1870
Year




>> [acor,lag]=xcorr(spots);

>> stem(lag,acor/length(spots));

>> title('Full Auto-correlation of Wolfer Sunspot Numbers')
>> xlabel('Lag, in years')

>> figure, stem(lag(100:120),acor(100:120)/length(spots));
>> title('Auto-correlation from 0 to 20 years')

>> xlabel("Years')

Full Auto-correlation of Wolfer Sunspot Numbers
4000 '
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Detecting Periodicities in Noisy
Data: Annual Sunspot Data
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Sonar and Radar Ranging

>> x=[ones(1,100),zeros(1,924)];
>>n=0:1023;
>> plot(n,x); axis([0 1023 -.2, 1.2])
>> title('Transmitted Pulse');xlabel('Sample,n’)
>> h=[zeros(1,399),1];

>> x_return=filter(h,1,x);

0.8

0.6

0.4

0.2

-0.2

Simulation of a

% Impulse response for z-400 delay ~ transmitted and

% Put signal thru delay filter
>> figure,plot(n,x_return); axis([0 1023 -.2, 1.2])
>> title('Pulse Return Signal');xlabel('Sample, n’)

Transmitted Pulse

0

100 200 300 400 500
Sample,n

600 700

800 900 1000

0.8}

0.6

0.4

0.2

-0.2
0

received pulse (echo)
with a 400 sample
delay

Pulse Return Signal

100 200 300 400 500 600 700 800 900 1000
Sample, n



* Sonar and Radar Ranging

>> [xcor_pure,lags]=xcorr(x_return,x);

>> plot(lags,xcor_pure/length(x))

>> title('Cross-correlation, transmitted and received pure signals’)
>> xlabel('lag, samples')

Cross-correlation, transmitted and received pure signals

0.1

The cross-correlation 009 [
of the transmitted and
received signals

shows they are o004 A
correlated with a 400 |

0.02

sample delay L

0.06 “ )

-0.02 : - - :
-1500 -1000 -500 0 500 1000 1500

lag, samples




* Sonar and Radar Ranging

>> x_ret_n=x_return+1.5*randn(size(x_return));

>> plot(n,x_ret_n); axis([0 1023 -6, 6]) %Note change in axis range
>> title('Return signal contaminated with noise")

>> xlabel('Sample,n')

Return signal contaminated with noise

The presence of
the return signal in
the presence of
noise is almost

impossible to see

_6 ] ] ] 1 [ ! ] s ]
0 100 200 300 400 500 600 700 800 900 1000
Sample,n



* Sonar and Radar Ranging

>> [xcor,lags]=xcorr(x_ret_n,x);
>> plot(lags,xcor/length(x))

0.12

Cross- 008 (‘ﬁ

correlation of 0,08 |

the transmitted ‘

signal with the f, J\ |
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m Summary

« Cross-correlation allows assessment of
the degree of similarity between two
signals.

- Its application to identifying a sonar/radar
return echo in heavy noise was illustrated.

» Auto-correlation (the correlation of a
signal with itself) helps identify signal
features buried In noise.



L The Laplace Transform



*eneralizing the Fourier Transform

The CTFT expresses a time-domain signal as a linear

combination of complex sinusoids of the form ¢’”. In the
generalization of the CTFT to the Laplace transform, the

complex sinusoids become complex exponentials of the

form e¢” where s can have any complex value. Replacing
the complex sinusoids with complex exponentials leads to

this definition of the Laplace transform.

L (x(¢))=X(s)= ]2 x(t)e™ dt

x(1)e—t—s X s)



?eneralizing the Fourier Transform

variable s 1s viewed as a generalization of the variable @ of

e
the form s = 0+ jw. Then, when o,the real part of s, 1s zero, the
Laplace transform reduces to the CTFT. Using s = 0 + jw the

Laplace transform is X(1)

X(s)sz(t)e—(m"'“’)'dt N\{ /\ o\ /

-0

=k [x(t)e"":l

which 1s the Fouriler

transform of x (z)e™




BCeneralizing the Fourier Transform

e extra factor es: 1S sometimes called a convergence factor
because, when chosen properly, it makes the integral converge
for some signals for which it would not otherwise converge.
For example, strictly speaking, the signal 4 u(z ) does not have
a CTFT because the integral does not converge. But if it is
multiplied by the convergence factor, and the real part of s
Is chosen appropriately, the CTFT integral will converge.

¥ X
dAu(t)esw dt = AOejw: dt = Does not converge
-¥ 0

¥ ¥
Odes u(t Yesw dt = AOe-svwy dt = Converges (if s > 0)

-¥ 0



Complex Exponential Excitation

It a continuous-time LTT system is excited by a complex
exponential x(7)=_4e”. where 4 and s can each be any complex

number. the system response 1s also a complex exponential of
the same functional form except multiplied by a complex constant.
The response 1s the convolution of the excitation with the impulse

response and that 1s

yiz)= J. h(z)x(t-7)dr= f h(z)Ade™ "dr = 4e” j h(zr)e “dr
—cr) ) X{7) —o
The quantity H(s) = [ h(7)e “dr is called the Laplace transform

-
—N

of h(r).



* Complex Exponential Excitation

Let x(t)=(6+ j3)e o = (6.708.£0.4637) "> /*

1

and leth(zr)=¢" u(z). Then H(s —% o > —4 and,
+

in this case, s =3— j2=0+ jw with 6 =3 >—4 and w =-2.

6+ 73 -
(1) =x(H(s) ==L

The response 1s the same functional form as the excitation but

= (0.6793.£0.742)e™ /.

multiplied by a different complex constant. This only happens when
the excitation 1s a complex exponential and that 1s what makes

complex exponentials unique.



Plerre-Simon Laplace

' N
3/23/1749 - 3/2/1827

55



Bl The Transfer Function

e X(¢) be the excitation and let y(¢) be the response of a

system with impulse response h(z ). The Laplace transform of

y(?) is

¥ ¥
Y(s)= O y(t)ewdt = O &h(t)*x(¢)0e-wdt
¥ ¥
¥ ¥ o)

Y()=0 ¢ On(t)x(c-t)at  +euds
¥ €.y

@
¥

¥
Y(s)= Onh(t)at O x(z -t)e-dt
Y i,

¥



Bl The Transfer Function

‘Letx(¢ )= u(z ) and let h(r )= e u(z ). Findy(z ).

Vi ¥

v() 5 U u(e-t)at
¥ -¥
i \ ‘-
y(t) |Ioo U dt=ea Oeo4t dt =eu 6441 =]='@-if— , 1>0
- , t<0

y(2) ( )U(t)
X(s)=1/s, H(s)= .y PY(s)= ; s+4 s st+4

()




ﬁ Cascade-Connected Systems

If two systems are cascade connected the transfer function of
the overall system is the product of the transfer functions of the
two individual systems.

X(s) —=

H,(s)

=X ($)H,(s) ~H,(s) =Y ($)=X(s)H,(s)H(s)

X(s) —{H (s)H ()

— Y ()




* Direct Form Il Realization

A very common form of transfer function 1s a ratio of two

polynomials 1n s.

| + 4 N N-1
X (S) Z =) b/" i bg\rS - b;\,.r_lS - sEREetk bl S b(b

, N i N, N —
X(s) S apst aysT Fay,sTT et ags+a

}I(S)



, Direct Form Il Realization

The transfer function can be conceived as the product of two
transfer functions.
Y, (s) |

Hl (S): X (s = 'N_’_ N-1 elemrmnal 4G
() ays” +ay,s a,s+a,
and
Y(s . .
4\" .’\'—
H, (s) = ( =bys" +by s +---+bs+b,
Y, (s)
1
— H{(s) = : - - R gl N-1 , L V(s
X(s) (s) 0o+ Ay s™% .+ 4 + dy Y, ($)~ Hys)=bysV+ by, s"% ...+ bys + b, = Y(5)




, Direct Form Il Realization

From

Y, (s) |
X (s) ays +ay 8" +--+ags+a,

we get

X(s)= [a sV +ay, s" T+ tas+a ]Y(S‘)

or
X(s)=ays" Y, (s)+ay,s" Y, (s)+--+asY,(s)+a, Y, (s)
Rearranging

.s--\’Yl(S):.L{X(S) E™a AL SRt A PR R A (0]

(’ -‘\‘.‘



ﬁ Direct Form Il Realization

l
Ay N .
X(s) —7_@_ > * s Y, (S)
-1
+ Oy |
+< 4 ! S.'\-lYl(S)
S-l
+ Aya %
- s Xi(S)
-
Y
a
-t sY,(s)
+ Y

- — Y, (5)



Direct Form Il Realization

a,

X b,
X(s)—:@ > * — t@—» Y(s)
4 +

|
\)
+ W by, +
- - e
+

Y +
§
\)

+  Aya by, +
- -
A +
Y
+ 4 b, 4
- - e
- y .

1
\)
dy b,




* Direct Form Il Realization

A system is defined by y¢¢(z ) + 3y¢(r ) + 7 y(r) = x¢(z ) -5 x(z ).

s-5
H(s)=
s2+3s+ 7
11 0 Simplified
X('S)—ﬁ_@_ - * > :@—» Y(s) X(.s‘)—ﬁ@ *
A +4 A
. L5 . | &
+ - + 3
+) - ! > + + ) —= I
A T &
\ A
7 . -5 7 :
< 1 > I

-+



Ml Inverse Laplace Transform

There is an inversion integral

1 S+¥

y(¢)= ij-S o Y(s)esds , s=s+jw

J
for finding y(z ) from Y(s), but it is rarely used in practice.

Usually inverse Laplace transforms are found by using tables
of standard functions and the properties of the Laplace transform.



Existence of the Laplace
Transform

Time Limited Signals

lﬁl

It x(+ )=0fort <1 and ¢ > # itis a time limited signal. If
x(¢) is also bounded for all ¢, the Laplace transform integral

converges and the Laplace transform exists for all s.
X(1)

Ly //\\/’1 ot




Existence of the Laplace
Transform

!

Let x(z )=rect(s)=u(r +1/2)-u(z-1/2).
¥ 1/2

X(s)= Orect()e- dt = O e dt Seotmto— Se g — Al s
-¥ -1/ 2



Existence of the Laplace
Transform

Right- and Left-Sided Signals

X(1) X(7)

-
t() t()

Right-Sided Left-Sided



Existence of the Laplace
Transform

Right- and Left-Sided Exponentials

X (1) X (1)

RN

o I

t f

0 0

*

Right-Sided Left-Sided

x(t)=eau(t-10), al x(t)=exu(to-¢), bl



Existence of the Laplace
Transform

Right-Sided Exponential X(7)

A

X(t)=eat(t-6) , al:

0 ( yie-jwidt

If Re(s) = s > a the asymptotic ﬁ

0

( )i€-jwt  AS t ® ¥
IS to approach zero and the Laplace

transform integral converges.



Transform

Left-Sided Exponential

x(t)=exu(to-¢), bl

X(S)= Ocve-sdt = O e(p-s)ye-widt

-¥ ¥
If s < b the asymptotic behavior of

e(b-s) esw: aS t ® -¥ IS to approach

wl Existence of the Laplace

zero and the Laplace transform
Integral converges.




wl Existence of the Laplace
Transform

The two conditions s > a and s < b define the region of
convergence (ROC) for the Laplace transform of right- and
left-sided signals.

m | [5]
%

- ROC =)

| & ¢ :['3
|
|

=—— Path of Integration —



mp Existence of the Laplace
Transform

Any right-sided signal that grows no faster than an exponential

In positive time and any left-sided signal that grows no faster
than an exponential in negative time has a Laplace transform.

1f x(z) = x-(¢) + x: (¢ ) where x- (¢ ) is the right-sided part and

x: () is the left-sided part and It (1)<|Krear andx: (tp<KzeFt

and a and b are as small as possible, then the Laplace-transform
Integral converges and the Laplace transform exists fora < s < b.
Therefore if a < b the ROC istheregiona <b. Ifa > Db, thereis
no ROC and the Laplace transform does not exist.




Ml Laplace Transform Pairs

The Laplace transform of g: (¢ ) = Aea u(z ) is

¥ y y
C (S)= O Aea U(t)e-stdt = AQe-(s-a)dt o ( v ewe di= A
¥ 0 0 S-a

This function has a pole at s =a and the ROC is the region to the
right of that point. The Laplace transform of gz(¢)= Aew: u(-¢) is

0

\¥ . Q A
G2 (S)= O Aew U(-t)e-stdt =40 eo-s)dl = A0 e(b-s)ie-iwidt=-
¥ ¥ ¥ s-b

This function has a pole at s = b and the ROC is the region to the
left of that point.




* Region of Convergence

The following two Laplace transform pairs illustrate the importance
of the region of convergence.

e u(t)e—— . , O>—0
s+

—e % u(—-t)¢—— L 6<-a
s+

The two time-domain functions are different but the algebraic

expressions for their Laplace transforms are the same. Only the
ROC’s are different.



Region of Convergence

Some of the most common Laplace transform pairs
(There is more extensive table in the book.)

u(t)e=—1/s , 6>0 —u(-t)eto1/s , 0<0
ramp(t)=tu(t)<L—>l/s2 , 6>0 ramp(—t)=—tu(—1)<L—)]/s2 , 0<0
e“’"u(t)<L—>l/(s+a) , O>—0 —e‘“’u(—t)<L—>l/(s+oc) , O<—0
e‘“’sin(a)ot)u(l)< L, (o:, , O>— —e‘“’sin(a)nt)u(—t)< Ely w‘,’ , O<—0
(s+a) +; (s+o) +o]
e‘“’cos(wot)u(t)< B G , O>—0 —e‘“’cos(wot)u(—t)< Ly ol , O<—0

(s+a) +o; (s+0) +o;



Find the Laplace transform of
x(t)=e"u(t)+e* u(-r)

1
" s+1

, o0>—1

o

=
Y

-~
N—

N
—

4

ﬁ Laplace Transform Example

5]

—-l<o<?2




Bl Laplace Transform Example

Find the inverse Laplace transform of

X(s)= + 10 -3<s<6
s+3  s-6

must inverse transform into a
10

The ROC tells us that

s+3

right-sided signal and that must inverse transform into

a left-sided signal.

s-6

X(¢) =4es u(t) + 10es u(-z )



Ml Laplace Transform Example

Find the inverse Laplace transform of
4 10

s+3 -6

The ROC tells us that both terms must inverse transform into a

right-sided signal.
X(¢) =4es u(t) - 10es u(z )

X(s)= ,S>06



Ml Laplace Transform Example

Find the inverse Laplace transform of
4 10

s+3 -6

The ROC tells us that both terms must inverse transform into a

left-sided signal.
X(¢) = -4es u(-t ) + 10es: u(-¢ )

X(s)= , S <-3



* MATLAB System Objects

A MATLAB system object is a special kind of variable in
MATLAB that contains all the information about a system.
It can be created with the tf command whose syntax is
sys = tf(num,den)
where Num is a vector of numerator coefficients of powers of s, den
is a vector of denominator coefficients of powers of s, both in descending

order and SYS is the system object.



* MATLAB System Objects

For example, the transfer function

H (s): s°+4
] P dst TR H+156 315895

can be created by the commands
»num = [1 @ 4] ; den =[14 71531 75];
»H1 = tf(num,den) ;

»H1
Transfer function:

sAZ2 + 4

SAS + 4 sA4 + 7 sA3 +15sA2 +31s+75



* Partial-Fraction Expansion

The mverse Laplace transtorm can always be found (1n principle at
least) by using the inversion integral. But that 1s rare 1n engineering
practice. The most common type of Laplace-transtform expression

1s a ratio of polynomials in s.

M M- ’
sl B & el 8 sl S,
G (s) =

1 :\," 1 _\.’_l
S Ay oS

+---a,s +a,
The denominator can be factored. putting it into the form.

M-l

M
D8 by, (8 bS5+,

(s—p, )(S — P )(S —p_\,—)

G(s)=



ﬁ Partial-Fraction Expansion

For now. assume that there are no repeated poles and that N' > A/

making the fraction proper i s. Then it 1s possible to write the

expression in the partial fraction form.

K K. K,

G(s)=——+—"3—+---+—2

S=p S—P, S— Py

where

M M-1 - - >
bys Fhy S  Tebstb, K K, K5
] ] - f 2 _dlsnds :
(s—=p)(s—p,)(s—py) s-p s-p, = Pn

The K’s can be found be any convenient method.



* Partial-Fraction Expansion

Multiply both sides by s — p,

K
K, +(s—p 2
(S,_ )b.-uSM +b.~u_lSM_l +---+bs+b, B l ( ll)s —
o (S“Pl)(S—p.,)“'(S—p:\_,) Ky
] : +(s—p ) —
s §— Pn

M M-1
I b0 ‘b, p " +-=3+b.p, +b,
|
(p—p2) (P - py)
All the K’s can be found by the same method and the inverse

Laplace transtform 1s then found by table look-up.




Partial-Fraction Expansion

10s .
(S) + kK2 y S > -4
(s +4)(s + 9)=s+ 4 s+9
é 10s
105t
K1 =6(s w/ = o2 = 40=8
5 (s 24)(s +9) Q=4  és+9Us=- 5

¢ 10s u €10su
K> =é(s + U — _ _13
(;))/ (S + 4)(S W Uls=-9 €s+4Us=-9 -5
-8 18 10
H(s)= t L =8s72+18s472= s

h(t ) - (-86-4t + 186-9t )U(f )



* Partial-Fraction Expansion

[ the expression has a repeated pole of the form.
M M1 ,
O 8 4058 Feeebl8 +0,

G (S ) = >
(S — Pl) (S — Ps ) . (S — p}.«")
the partial fraction expansion 1s of the form.

G(S)= R 7T o} + By LR Ay
(S_pl)~ S—pPp S—P; &=

and K|, can be found using the same method as betfore.

But X, cannot be found using the same method.



* Partial-Fraction Expansion

Instead K|, can be found by using the more general formula

- | (im—k m :
K, = [(s—pq) H(s)} , k=12,---.m

(’” = /\' )' (iS m:k P,

where m 1s the order of the gth pole. which applies to repeated poles

of any order.

If the expression 1s not a proper fraction in s the partial-
fraction method will not work. But it is alwayvs possible to
synthetically divide the numerator by the denominator until
the remainder 1s a proper fraction and then apply partial-fraction

expansion.



Partial-Fraction Expansion

10s 12 K

H(s)= + [ . s>4
(5)= (s +4)2s +9) (s+ 4),+ s+4 549
Repeated Pole
é u
K12 =8(s + / u =-40=-8
é W s+9) U 5
e Us=-4
Using
1 dn-k .
Ky = Spa)nHs) T k=12 m
(m k)' ASm-k ( ) Us®p ,
Ko = 1 d21 &(s + AL HE)U . ?lOSU
(2-1)ds2a  © Use-4 ds © (s



Partial-Fraction Expansion

é(s +9)10 -10su
11 = é u =18—
é (S + 9)2 Gs=-4 5

(s +&)+1 8/5
K>=-18 T PH(s)= +-18/5—s—> -4

st+4 s+9

-8s-72 + E(Sz +13¢ + 36)-1%_;(S2 + 8s +16)

H()- G F A FI) 8>

_ 10s -
6= GrapGeg) 57

e 0
h(t ) = -8teus +18 —e-4 -18e-o— .
¢ 5 5 +u(z)



Partial-Fraction Expansion

10s° .
H(s)= , $ > -4 7 Improper in s
(s +4)(s +9)
10s°
H(S)= y S > -4
s2 +13s + 36
10
Synthetic Division ® 52 + 135 + 36 >10sz
10s2 + 130s + 360
- 130s - 360
130s + 360 e-32 162u
H(s)=10 - + — ,8>-4
(s + 4)(s + 9)=10-és+4 s+9U

h(z) =10d (¢ ) -é162e - 32e4tiu(z )

u



!

Inverse Laplace Transform

Example
Method 1
Gls)= (s - 3)(s2 - 4s + 5) 82
G(s)= (s=8)s=2F)s=2-)) | g<2
()= (Bt —(aglh-ee:
& 3 3+j 3-j 0

= - —e3 )+
¢ 263 + A €(2-) 1 +U(-t)

g(z )



Inverse Laplace Transform

il
i

Example
e 3 3+ 3-] o)
- - —e3 ) F +7)¢
9() =7 gt et — ey

This looks like a function of time that is complex-valued. But,
with the use of some trigonometric identities it can be put into
the form

g(t ) = (31 2){ex 8cos(z ) +(1/3)sin(z )0 - ex Ju(-t )
which has only real values.



mp /nverse Laplace Transform
71

Emmgle

Gls)= (s -3)(s2-4s +5) 852

G(s)= (=3)s=2F)s=2-7)  g<2

3/2
G(s)= -(3+f -(3-7)/4, 2
0= Bl fAs<
Getting a common denominator and simplifying
3/2 1 6s-10 3/2 6 s-5/3

G(s)= = , $<2

-3 ds2-4s+5 53 Z(s -2)2 +1



Inverse Laplace Transtorm

Example
M ethod 2

3/2 6 s-5/3
- — , $<2
5-3 A(s - 2)2 +1
The denominator of the second term has the form of the Laplace
transform of a damped cosine or damped sine but the numerator
IS not yet in the correct form. But by adding and subtracting the
correct expression from that term and factoring we can put it into

the form

i
Il

G(s)=

3/2 3¢ 52 1/3 u
G(s)= - —& 0 s<2
5-3 2 é(S -2)2 +1+(s - 2)2 +1 0



Inverse Laplace Transform

!

Example
M ethod 2
3/2 3¢ 52 1/3 u
G(s)= - —a 0, s<2
5-3 2 a(s-2)+1+(s-2)2 +1 0

This can now be directly inverse Laplace transformed into
g(t ) = (37 2){ex cos(¢ ) +(L 1 3)sin(z )0 - ex Ju(-t)

which is the same as the previous result.



mp /nverse Laplace Transform

Example
M ethod 3
When we have a pair of poles p. and ps that are complex conjugates
A :
we can convert the form G(s) = + K>— + Ks— into the
s-3  s-p2 S-p3
A (K2 + K3)-K3p2 -K2p3 Bs+C

form G(s) = +s =4 —+
(5) 5-3 s2 - (p1+ p2 )s + p1p2 s-32 - (p1 + p2 )s + p1 p2

In this example we can find the constants 4, B and C by realizing that

° + BstC
(5-3)(52-4s+5) s-3  s2-4s+5
IS not just an equation, it is an identity. That means it must be an
equality for any value of s.

G(s)=

., §<?2



Inverse Laplace Transtorm
Example

M ethod 3
A can be found as before to be 3/ 2. Letting s =0, the

I
nI

Identity becomes O ° -3#%— +€5— and C =5/2. Then, letting

s =1, and solving we get B = -3/2. Now

Gls)= 2 +(3/2)s45l2— | s<2
5-3 s2-4s +5
or
3/2 3 s-5/3
= - = , §<2
G(S) 5-3 252 -4s+5

This is the same as a result in Method 2 and the rest of the solution
IS also the same. The advantage of this method is that all the
numbers are real.



Use of MATLAB In Partial
Fraction Expansion

MATLAB has a function residue that can be very helpful in

partial fraction expansion. Its syntax is [r,p,k] = residue(b,a)
where b is a vector of coefficients of descending powers of s

in the numerator of the expression and a is a vector of coefficients
of descending powers of s in the denominator of the expression,

r 1s a vector of residues, p 1s a vector of finite pole locations and

k 1s a vector of so-called direct terms which result when the
degree of the numerator is equal to or greater than the degree

of the denominator. For our purposes, residues are simply the

numerators in the partial-fraction expansion.



Laplace Transform Properties

et g(¢) and h(z) form the transform pairs, g(7)«—=—G(s)
and h(t)<——H(s) with ROC's, ROC, and ROC,, respectively.

Linearity og(t)+Bh(t)«——aG(s)+BH(s)
ROC o ROC, NROC,

e SI“

Time Shifting  g(r-1,)«——G(s)e
ROC =ROC,
s-Domain Shift ¢ g(t)«——G (s—s5,)
ROC =ROC;; shifted by s,,
(s 1sin ROC if s — s, 1s in ROC,,)



* Laplace Transform Properties

Time Scaling

Time Differentiation

s-Domain Differentiation

g(at)(L—>(1/|aDG(s/a)
ROC =ROC,, scaled by a
(s 1sin ROC if s /a 1s in ROC,,)
%g(i)(—L—mG(s)
ROC o ROC,
_tg(t)e——2G(s)
ds
ROC = ROC,




Laplace Transform Properties

Convolution in Time g(1

)*h(t)(L—>G(s)H(s)
ROC o ROC,; "nROC,

Time Integration J g(t)dr—=—G(s)/s

ROC o ROC, N (o >0)

If g(£)=0 , <0 and there are no impulses or higher-order

singularities at =0 then

Initial Value Theorem: g(0%)=1limsG(s)

§—>o0

Final Value Theorem: limg(7)=1limsG(s) if limg(z) exists

[—oo s—0 [—>00



* Laplace Transform Properties

Final Value Theorem limg(z)=1imsG(s)

[—>oco s—0

This theorem only applies if the limit limg() actually exists.

It is possible for the limit lim sG(s) to exist even though the

s—0

limit limg(z) does not exist. For example

[—o0
A)
x(1) = cos(w,t)e—— X(s) = R
2
. . &
{1_{138)((5)— lim o 1o 0

but lim cos(a)ot) does not exist.

1—>o0



Bl Laplace Transform Properties

Final Value Theorem

The final value theorem applies to a function G (s) if all the
poles of sG(s) lie in the open left half of the s plane. Be sure
to notice that this does not say that all the poles of G (s) must

lie in the open left half of the s plane. G (s) could have a single
pole at s = 0 and the final value theorem would still apply.



* Use of Laplace Transform
Properties

Find the Laplace transforms of x(¢)=u(¢)—u(z—a) and
x(2¢)=u(2¢)—u(2¢—a). From the table u(t)<——>1/s, 6 >0.

as

Then, using the time-shifting property u(z — a)(———>e‘ " 18,020,

Using the linearity property u(z)—u(s—a )(—L—a(l—e""s)/s, o >0.

Using the time-scaling property

__—as __—asl2
u(2t)—u(2t—a)(—"——>%[l i } 17¢ 550
s—5/2

\)



* Use of Laplace Transform
Properties

Use the s-domain differentiation property and
u(t)«——1/s,0>0

to find the inverse Laplace transform of 1/s”. The s-domain

differentiation property is —#g ()< - >j (G(s)) Then
s

d (1 |
—tu(t)e—— . (;) == Then using the linearity property

ru(t)e——> 1,.




mp he Unilateral Laplace
Transform

In most practical signal and system analysis using the Laplace
transform a modified form of the transform, called the unilateral

Laplace transform, is used. The unilateral Laplace transform is

defined by G(s) = C‘): g(z )e- dt. The only difference between
this version and the previous definition is the change of the lower
Integration limit from - ¥ to 0-. With this definition, all the
Laplace transforms of causal functions are the same as before
with the same ROC, the region of the s plane to the right of all
the finite poles.



m The Unilateral Laplace
Transform

The unilateral Laplace transform integral excludes negative time.

If a function has non-zero behavior in negative time its unilateral

and bilateral transforms will be different. Also functions with the

same positive time behavior but different negative time behavior

will have the same unilateral Laplace transform. Therefore, to avoid
ambiguity and confusion, the unilateral Laplace transform should

only be used in analysis of causal signals and systems. This is a
limitation but in most practical analysis this limitation is not significant
and the unilateral Laplace transform actually has advantages.



- The Unilateral Laplace
Transform

The main advantage of the unilateral Laplace transform is that

the ROC is simpler than for the bilateral Laplace transform and,
In most practical analysis, involved consideration of the ROC is
unnecessary. The inverse Laplace transform is unchanged. It is

1 S+j¥
O G(s)e+sds

g(t) = -
]ZP&#




The Unilateral Laplace
Transform

Some of the properties of the unilateral Laplace transform are

different from the bilateral Laplace transform.

Time-Shifting g(t - )<—"——>G(s)e"‘"" g2
Time Scaling g(at)(——"———)(l/|a|)G(s/a) ,a>0
First Time Derivative %g(f)(L—mG(s) - g(O')
. — d" E N C N—n d"’
Nth Time Derivative dt_N(g(t))(_)S G(s)- Zs = (g(t))
' n=1 1=0"

Time Integration J g(t)dt——G(s)/s
0



n The Unilateral Laplace
Transform

The time shifting property applies only for shifts to the right because
a shift to the left could cause a signal to become non-causal. For the

same reason scaling in time must only be done with positive scaling
coefficients so that time is not reversed producing an anti-causal function.

The derivative property must now take into account the initial value

of the function at time ¢ = 0- and the integral property applies only to
functional behavior after time # = 0. Since the unilateral and bilateral
Laplace transforms are the same for causal functions, the bilateral table
of transform pairs can be used for causal functions.



- The Unilateral Laplace
Transform

The Laplace transform was developed for the solution of differential
equations and the unilateral form is especially well suited for solving
differential equations with initial conditions. For example,

d ex(e)a + 7 d éx(s)a +12x(1)=0
dre VM

with initial conditions x(0. ) = 2

and %(X(t ). =-4

Laplace transforming both sides of the equation, using the new
derivative property for unilateral Laplace transforms,

s2 X(s)- sx(0- )- dit(x(t ). 7 s 0, 12X(s) =0



The Unilateral Laplace
ﬁ Transform

Solving for X ()

—4
23 =2 ,d 5
sX(07)+7x(07 )+—(x(7
X (5)= ()70 5 (5O
s +7s+12
or X(s)= —sal s = . The inverse transform vields

s’+7s+12  s+3 s+4
x(r)=(4e™ —2¢™ Ju(r). This solution solves the differential equation

with the given mnitial conditions.



* Pole-Zero Diagrams and
Frequency Response

It the transfer function of a stable system 1s H(s). the frequency
response 1s H(j» ). The most common type of transfer function
1s of the torm.

7 (s=p)(s-p)(s—py)
Theretore H(jw ) 1s

(jo—z)(jo—2z,)-(jo-2z,)

L) (jo-p)(jo—p;)-(jo-py)




* Pole-Zero Diagrams and
Frequency Response

38
s+3

Let H(S) =

jw
H(/® 3
(‘] ) Jo + 3

The numerator j@ and the

denominator j + 3 can be

conceived as vectors in the

s plane.

XH(jo)=£3+Ljo-£(jo+3)
=0



1

Llém-l(jw)=|lim3

Pole-Zero Diagrams and
Frequency Response

20

o im [How)# timz 2L =
WE0- | Jw + 3| ®0+ WE0+ | Jw + 3|
IH(jw)|
_A_
N s
o3
NV |
20 @
W im 4w B W _
o s e

L'é'f? HGw)s lim3 w+3




* Pole-Zero Diagrams and
Frequency Response

: . P i w)=n_0= _|
bgon H(w)= - E-O—-p > bgg‘ H(w) P%—p »
Phase of H(jm)
n
i
i
2D \ 20 9@
2
I W)= ® 0 im- W)= p__ =
b&' W= o ¢ Png LIC'R>T¥ w 2 P3°




* Pole-Zero Diagrams and
Frequency Response
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ﬁ Pole-Zero Diagrams and
Frequency Response
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* Pole-Zero Diagrams and
Frequency Response
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L The z Transform



Ml  Generalizing the DTFT

A, 3
The forward DTFT is defined by X(ew )= @ x[n]esw. in which

n=-¥

W is discrete-time radian frequency, a real variable. The quantity ewx
IS then a complex sinusoid whose magnitude is always one and whose
phase can range over all angles. It always lies on the unit circle in

the complex plane. If we now replace ew with a variable z that can

3
have any complex value we define the z transform X(z) = @ Xx[n]z-
n=-¥

The DTFT expresses signals as linear combinations of complex
sinusoids. The z transform expresses signals as linear combinations of

complex exponentials.




omplex Exponential Excitation

Let the excitation of a discrete-time LTI system be a complex
exponential of the form Az" where z 1s. 1n general. complex and
A 1s any constant. Using convolution. the response v [n] of an LTI
system with impulse response h[n] to a complex exponential
excitation x[n] is

v[n]=h[n]* Az =AY h[m]z"" = Az" S h[m]z

L =x[n] m=-=

The response 1s the product of the excitation and the z transform of

h[n] defined by H(z Z h [n

==



ﬁ The Transfer Function

If an LTI system with impulse response h[»] is excited by a signal.
x[n]. the z transform Y (z) of the response y[n] is

Z [n] Z h[n]* \[n] Z Zh[m] [n m]_ "

H=—a N=—b N=—an IN=—a»

e Z h[m]i x[n-m]z"

n=— N=—

Let g =n—m. Then

Z h[m]z_ﬂ\[q] ) = Z h[,,,] Z x[q]z

== IH——‘ (j——

Y(::)=H(::)X(:)

H(z) is the transfer function.



Systems Described by
Difference Equations

The most common description of a discrete-time system 1s a
difference equation of the general form

Z(lA y|n-k]= Zb x|n—k]

k=0
[t was shown 1n Chapter 5 that the transfer function for a system of

this tyvpe 1s

.~k =1 =2 M
H(z) = 22 X _ by bz b7+ +by,2
3 J RN (T N g
Zk:n"k“ Gy 4027 @,z "+t @z
or
Z bz bz +b " +---+b,, z+b
. - 0 k< _ _N-M o~ M-1~ M
H(z) = g

N —k
Zk:oak: Y4vaz M +ta, z+a,



ﬁ Direct Form |l Realization

Direct Form Il realization of a discrete-time system is similar
in form to Direct Form Il realization of continuous-time systems

A continuous-time system can be realized with integrators,
summing junctions and multipliers

A discrete-time system can be realized with delays, summing
junctions and multipliers



Direct Form |l Realization




* The Inverse z Transform

The inversion mtegral 1s

X [n] = % .; f ):"“la’z.

This 1s a contour mtegral in the complex plane and 1s bevond the
scope of this course. The notation x|[n|«——X(z) indicates that

X |7 | anc z) 1c a "z-transtor
X and X form a "z-transform pair"



!

Time Limited Signals

If a discrete-time signal x[#]
IS time limited and bounded,
the z transformation

g .
summation @ X[n]z. is

n=-¥ ~ eeeesescccccsce ﬂ
ol

finite and the z transform of
X[n] exists for any non-zero
value of z.

X[n]

]

L 4

. Existence of the z Transform

ll




ﬁ Existence of the z Transform

Right- and Left-Sided Signals

A right-sided signal x- [n] is one for which x. [»#] = 0 for any
n < no and a left-sided signal x: [#] is one for which x; [n]= 0
forany n > no .

x'_lnl X,l"l

w— Hhh,........



* Existence of the z Transform

Right- and Left-Sided Exponentials

X[n]=a. u[n - no , al- X[n]=bau[no-n] , b1

<[] <[]

et mHmmHIHH ) |m”mlmm 101 ST

II“ ”u




!

_ |
. Existence of the z Transform

The z transform of X[n] = a-u[n-no ] , al- s
¥ ¥

X(Z)=éan u[n - no ]z-n=é(az-1 )

n=-¥ n=no

If the series converges and it converges
ifzﬁa. |Tne path of integration of : 12l

S T 2 X
» s N
ROC - WA
I [la \

region of the z plane outside a circle of ; \/ —
: y Path of

the Inverse z transform must lie in the

/
S /
- S -
I‘adlusa| | - Integration




|

- Existence of the z Transform

i

The z transform of x[n] = bsu[no-n] , b1+ is
o M0 o no , c}f .
X(Z)=aan-n=a(bZ-l )= a(b-lZ )
n=-¥ n=-¥ n=-no
If the series converges and it converges if  |z| <|b|. The path
of integration of the inverse z transform
must lie in the region of the z plane inside L2
a circle of radius |b]| N CIIRR

~ \ /
Path of S~-7
Integration




x[n] = (1.2)"uln] + (3)"ul-n-1]

!
10

ROCis 1.2 <|z|<3

®

-12

_,W.mﬂ”””

~n
12

x|n] = (0.85)"cos(2an/6)uln] + (0.9)"cos(2xn/6)ul-n-1]

4
4

!

ROC is 0.85 <|z| <09

|I 1y
_,zlll i

4

"‘.,—L."T""._’Il

12

ﬂ Existence of the z Transform

x|n] = (0.95)"uln] + (0.9)"ul-n-1]

L 4
&
]

4

it

No ROC

n

AR

x|n] = (1.1) cos(2rn/6)uln] + (1.05)"cos(2xn/6)ul-n-1)

4
No ROC ‘
te__ole oy TIT I "
PRAMRS LN AR b lll 12

.4"




Some Common z Transform
e alrs

afn]eto 5= > , —ul-n- et <
4 1 2 1
o' u[n]t S 2 2| > | ; —o"u[-n-1]& —— , |2 <|ef
- P - -~
mnjeto———s=——x | |¢>1 ; —nu[-n-1]eto——=—— | |7<I
(z=1) (1-2") (z=1)" (1-2")

net" ulnfet— ——— = L d>le] _ o u[-n— 1] oz oz

>(:.—a)2 -(l—az"f . |2l <|ef

sin(Qn)u[n]eEt— 2sin(Q,)

. |Z>1 . =sin(Qn)u[-n-1]E— zsin(Q,)

., |27 <1
z —2zcos(Q,)+1 Z —2zcos(Q,)+1 o<
z| z-cos(€,) z| z—cos(L,)
cos(Qn)u[n]E >?2E2’CM(QO)1| s |2 >1 . —cos(Qun)u[-n—1]E >=':—[7"COQ(QO)':+I'] , |2 <1
< “~ L ) ~ T y ()]

' zosin(£2, :
a"sin(Qn)u[n]= >vz—-2ao-(::s(((;))+a3 Nzl =lef o —asin(Qun)u[-n—1]eF—
< “~ ™

7

zasin(Q,) il <laf
' —2azcos(Q,)+a 7

2| z—acos(Q z| 2= orcos(Q
" cos(Qn)u[n]E >~3—[7a~(z::)(5£(2 )"l]a: zl>le . - e cos(Qun)u[-n - 1]2— [2-orcos(Q,)]
< LS N ™

2 = 2azeos(Q, )+

5+ Jed <la

a?’ll Z > ’ja - --3a—l ) |a| <|:| < |a-l‘
= T | LM =y =2 0 W
u[n_"”]_u[n_"'](_.z__)fl(z-m._;—n,)___ ' +"'-"I_I + +~,+l ' l:l}O

<



z-Transform Properties

iven the z-transform pairs g[n]«~%—G(z) and h[n]«~“—H(z)
with ROC's of ROC; and ROC; respectively the following

properties apply to the z transform.

Linearity og[n]+ Bh[n]«~t—aG(z)+ BH(z)
ROC = ROC, N ROC,

Time Shifting g [n —n, ] IR G(z)
ROC = ROC, except perhaps z=0 orz — o0

Change of Scale in 7 o' g[n]«~t—>G(z/ )
ROC = |o|ROC,,



z-Transform Properties

ime Reversal g[-n]«t—G(z")
ROC=1/ROC,
/k| , n/k and int ,
Time Expansion {g[n L an. " eger}(_)z G(z‘)
0 , otherwise
ROC =(ROC,)"
Conjugation ¢ [n]«t—>G'(z')
ROC=ROC,
R o s 2z d
z-Domain Differentiation —ng|n]< >zd G(z)
Z

ROC =ROC,



z-Transform Properties

onvolution g[n]*h[n]«~—H(z)G(z)

First Backward Difference g[n]-g[n—1]«Z*—(1-z")G(z)
ROC 2 ROC, N[z|>0

Accumulation Y g[m]«t— ZIG(z)
m=—oo &

ROC 2 ROC, N|z|>1

Initial Value Theorem If g[n]=0,n<0 then g[0]=1lim G(z)

Final Value Theorem If g[n]=0,n<0, lim g[n]zl_irrll(z—l)G(z)

if lim g[n] exists.

e e



Ml z-Transform Properties

For the final-value theorem to apply to a function G(z) all the
finite poles of the function (z - 1)G(z) must lie in the open
Interior of the unit circle of the z plane. Notice this does not
say that all the poles of G (z) must lie in the open interior of
the unit circle. G (z) could have a single pole at z = 1 and the

final-value theorem could still apply.



I
nI

The Inverse z Transform

Synthetic Division

For rational z transforms of the form

H(z)= by zu *+bm-1zy1 ++ +biz+bo

d nzy +anvazhva ++ +aiztao
we can always find the inverse z transform by synthetic

division. For example,

= 5% Vo5 - 708

z3-0.122-1.04z - 0.336

H(z)= .1z 0.8
& o o5n-0aazv008 ' T




* The Inverse z Transform

Synthetic Division

1404z +0.5272--.
z2=0.5z"-0.34z +O.()8):3 -0.1z* -1.04z-0.336

2> —=0.522-0.34z +0.08

0.4z° = 0.7z- 0.256
04z —0.2z— 0.136-0.032z""
0.5z- 0.1240.032z™"

The mverse z transform 1s

5 [n]+043[n-1]+0.56[n-2]--«E>1+04z7" +0.527 -



Synthetic Division

* The Inverse z Transform

We could have done the synthetic division this way.

—4.2-30.852-158.613z*---
0.08—0.34z-0.5z* + :-‘)—0.336 —1.04z-0.1z% +2°

—0.336+1.428z+2.1z* -4 .27°
—2.468z-222z*+527°
—-2.468z+10.489z° +15.4252° —30.85z*

-12.689z* -10.2252° +30.85z*

—4.25[n]-30.855[n+1]-158.6135[n+2]---«->-4.2-30.852-158.613z"---
but with the restriction |:| > (.8 this second form does not converge and 1s

theretore not the inverse z transtorm.



Bl The Inverse z Transform

Synthetic Division

We can always find the inverse z transform of a rational
function with synthetic division but the result is not in closed

form. In most practical cases a closed-form solution is
preferred.



Partial Fraction Expansion

Partial-fraction expansion works for inverse z transforms the
same way 1t does for inverse Laplace transtorms. But there 1s
a situation that 1s quite common m 1nverse z transforms which
deserves mention. It 1s very common to have z-domain
functions in which the number of finite zeros equals the
number of finite poles (making the expression improper in z)

with at least one zero at z =0.

SN sl o Co A Co )



Partial Fraction Expansion
Dividing both sides by z we get

H(:) - :‘\._M—l(:_zl)(:_‘:l)”.(‘:_:_:\1)
z (:_pl)(:_172)"’(:_17.\')

and the fraction on the right 1s now proper in z and can be

expanded m partial fractions.

Hiz)_ K , K ., K

< c—P 42— P Z— Py

Then both sides can be multiplied by z and the inverse transform

can be found.

H(z)= = + LI
g—p Z—P; 2Py

h[n]=K, p'u[n]+K,p)u[n]+---+ K, pyu|n]




Ml z-Transform Properties

An LTI system has a transfer function
Y -1/2
H(z)= L)
X(z) z2z-z+2/9
Using the time-shifting property of the z transform draw a
block diagram realization of the system.
Y(z)(z2 -z +2/9)= X(2)(z -1/ 2)
22 Y (z)= z X(z)-(1/ 2)X(z)+ zY(2)- (2/9)Y(z)
Y(z)= z1 X(2)-(1/ 2)z2 X(z)+ z1Y(2)- (2/9)z2 Y(z)

, |Z|>2/3



? z-Transform Properties
Y

(z)= z1 X(2)-(1/ 2)z2 X(2)*+ z1 Y (2)- (21 9)z2 Y(2)
Using the time-shifting property
yln]=X[n -1]-(1/ 2)X[n - 2]+ y[n -1]- (27 9)y[n - 2]

x[n]ﬂ 1
D D
+>q_><+
D D
1L2 2L9

~y[n]



z—1

z—0.8e ™" )(Z L 0.88+j”/4) . Draw a

T z-Transform Properties
etelf-2oG(e)

pole-zero diagram for G(z) and for the z transform of ¢’ g[n]

The poles of G(z) are at z=0.8¢""* and its single finite zero is

at z=1. Using the change of scale property

Ze—,'ms 1

ze —jr/8 O 8€—jn‘/4)(ze—jn’/8 _0.8€+j7”4)
o I8 (Z— ejzr/8)
e—jn/S (Z_O.Se—jn/S)e—jn/R (Z_O_86+j3n/8)

Z_ejzt/S

(Z . O.Se_j”/g )(Z . 0.86+j37r/8)

]Jrn/ 8

g[n](——)G(ze" IR ) = (

G(ze_""”8 ) =

G(Ze—jms)z ej;r/8




!

z-Transform Properties

G(ze.ps ) has poles at z = 0.8e.ps and 0.8e+ps and a zero

at z = ejpis . All the finite zero and pole locations have been

rotated in the z plane by p /8 radians.

Pole-zero Plot of G(z)

A

-
~.

\ - ca ad >

Y

Pole-zero Plot of G(ze”)

4

Y

/‘Q 0

-
-~

Y



ﬁ z-Transform Properties

Using the accumulation property and u[n]< £ Z] , |z>1
Z_

show that the z transform of nu[n] is 7| = 1.

2 9

(z-1)

nu[n]z Zu[m— l]

m=()
U[n_ I]FZ )Z_l Z — 1 b
z—1 z-1

muln]= Y ulm-1]e? >(ZZ ).l =

m=()




* Inverse z Transform Example

Find the inverse z transform of

Z <
Xlz)= — . 05 <zl€2
&)= 20572 5

Right-sided signals have ROC’s that are outside a circle and

left-sided signals have ROC’s that are inside a circle. Using
z 1

z—a 1-az

Z < 1

—o"ul-n—1|¢ > =
au[n ] z=a l—=o5z

o' u[n]t—

T 12> le

7| <lef

-] ?
We get

Ve _ Z
z—05 z+2

(0.5)" u[n]+(=2)" u[-n-1]«Et—>X(z)= , 0.5<]z]<2



ﬁ Inverse z Transform Example

Find the inverse z transform of

% Z
(7= _ ,
(2) 708 z+0

In this case, both signals are right sided. Then using

z‘>2

o' un]etos = :
2—a l-o0z

3> |ef

-1

We get

[(05)" ~(2) Ju[n}e* =X ()= —~-— » [dI>2




Find the inverse z transform of

Z Z
Xlz)= — ,
(Z) z—05 z+2

In this case, both signals are left sided. Then using

z|<0.5

Z < I

—a"u|-n—1]« PR — , |z <||
We get
_ 05 n_ _2 n _ —l Z X - < _ 4
[(05) ~(=2) Jul-n-1]2oX(z) = == -5

6/28/2015

ﬁ Inverse z Transform Example

z|<0.5

?



? The Unilateral z Transform

Just as It was convenient to define a unilateral Laplace transform it is
convenient for analogous reasons to define a unilateral z transform

x(z)=éf<[n]z-n

n=0



Properties of the Unilateral z
* Transform

If two causal discrete-time signals form these transform pairs,

g[n]«~-—G(z) and h[n]<~—H(z) then the following properties
hold for the unilateral z transform.
Time Shifting

Delay: g[n — n0]<—z——-)z"'° G(z),n, =0

’10""

Advance: g[n+n,|«t—z" (G(z)—Zg[m]z"”J , 1y >0

m=0

Accumulation:

> g[mletm—=0(z)

m=0



Bl Solving Difference Equations

The unilateral z transform is well suited to solving difference
equations with initial conditions. For example,

1
J[n+2]- gy[n+1]+ Vn=(U/4), forn®0
y[0]=10 and y[1] =4

z transforming both sides,
1 z

3
z2 €Y(z)-y|O0]- z-1y|1]|u- — 7 0+ —Y(z)=
gyl e S 7

the initial conditions are called for systematically.



ﬁ Solving Difference Equations

Applying initial conditions and solving,

2 16/3 4 2/30
+ +

Y(z)=z
¢cz-1/4 z-1/2 z-1+

and

yln]= e— — +4 =" +—au[x]
& 3¢c4+ c2+ 3 0
This solution satisfies the difference equation and the initial

conditions.



Pole-Zero Diagrams and
Frequency Response

For a stable system, the response to a sinusoid applied at
time t = 0 approaches the response to a true sinusoid (applied
for all time).

yln] Response to a Sinusoid

1

Response to a Suddenly-Applied Sinusoid
yln]
|

L
1




* Pole-Zero Diagrams and
Frequency Response

Let the transfer function of a system be
Z VA

z2-z12+5/16 ) (z—pl)(z-pz)

p1 =142 | p2=1-2 T . Z] 10)
4 ‘ ‘4 ) ”;fo L= e’
ew £
IH(ejW):*: ‘ejw - p1 ‘ ’ejw - D2 ‘ \‘/'f‘ -

H (Z)=




ﬁ Pole-Zero Diagrams and

Frequency Response

Closest Approach to a Pole

IH(™)

Closest Approach to a Pole

XH(e’*¥

= ()
21

-\

\ .
LT




®Transform Method Comparison

4

A system with transfer function H(z) = 0.8
Y B)= 0309,
IS excited by a unit sequence. Find the total response.
Using z-transform methods,
A
Y(z)= H(z)X(z)= , 1
()= HEX() (z-0.3)(z + 0.8) z-1 s
2 1169 0.3232  0.7937
Y(2)= ) et b
z-0.3 z+0.8 z-1

y[n]= §01169  (0.3).1+0.3232 (-0.8).1 +0.79370 oul7-1]



*Transform Method Comparison

Using the DTFT,
o 5 ejQ
H(e”) (e’ =0.3)(e’® +0.8)
Q 0 Q g/~ I
Y(ef ):H(e-’ )X(e-’ )=((,19_(:)';)((,_JQ_*_()_8))((1_( j_~+72'() (Q)))
\ DTFT of a Unit Sequence l
V(e e’ a8 5, (©
( )_()-'9-—0 3)(e” +0.8) (e 1)+/T(e-'9—0.3)(e-"'2+0.8)(2"( )
" —() 1169 () 3232 0.7937 T R
(") =03t P r08 t eP -1 +(l—(ﬁ).3)(l+().8)02"(Q)



*Transform Method Comparison

Using the equivalence property of the impulse and the periodicity of
both &, (<) and e’
~ —0.1169¢ 3 0.3232¢7 " 0.7937¢ 7
1-0.3¢7%  1+0.877¢  1-¢/°

Then. manipulating this expression mto a form for which the imverse
DTEFT 1s direct

oy —0.1169¢7% 0.3232¢77 : ‘
Y(e?) = e +0.7937| —— +15,, (Q)

1-0.3¢ 1+0.8¢ /™ -2 27

~0.793775,_ () +2.49335,_ (L)

o

Y(e™) +2.493305,_(Q)

- jQ

”

=()



®Transform Method Comparison

-0.1169e-w 0.3232¢.w & e 6
Y(ew)= + +0.7937 + pdz (W)
1-0.3e.w 1+0.8ew Gl-ew =

Finding the inverse DTFT,

y[n]= §01169  (0.3)..+03232 (-0.8).1 +0.79370 qul-1]

The result is the same as the result using the z transform, but the effort
and the probability of error are considerably greater.



.l'System Response to a Sinusoid

A s tem with transfer function

H(z)= gg . |22 0.9

is excited by the sinusoid x[n] = cos(2p n/12). Find the response.

The z transform of a true sinusoid does not appear in the table of z
transforms. The z transform of a causal sinusoid of the form
X[n]= cos(2pn /12)u[n] does appear. We can use the DTFT to
find the response to the true sinusoid and the result is
y[n]=1.995c0s(2pn /12 -1.115).




.l'System Response to a Sinusoid

Using the z transform we can find the response of the system to a
causal sinusoid x[n] = cos(2p n / 12)u[xn] and the response is
y[n]=0.1217(0.9). u[n]+1.995c0s(2pn /12 -1.115)u[x]

Notice that the response consists of two parts, a transient response

0.1217(0.9). u[n] and a forced response 1.995 cos(2p n / 12 - 1.115)u[x]
that, except for the unit sequence factor, Is exactly the same as the
forced response we found using the DTFT.



ystem Response to a Sinusoid

This type of analysis 1s very common. We can generalize it to say that

N(z)
D(z)

if a system has a transfer function H(z) = that the response to a

causal cosine excitation cos(Q,n)u[n] is

(NG
SR STe

Natural or Transient Response

z +E(p1)|cos(Qon+z(H(pl))u[nJ

N~
4 Forced Response

/% This consists of a natural or transient response and a

where p, = e
forced response. If the system is stable the transient response dies away
with time leaving only the forced response which, except for the u [n]

factor 1s the same as the forced response to a true cosine. So we can use

the z transform to find the response to a true sinusoid.



